Skip to main content

Advertisement

Log in

Phytosterols and Dementia

  • Review Article
  • Published:
Plant Foods for Human Nutrition Aims and scope Submit manuscript

Abstract

As the aging of the world’s population is becoming increasingly serious, dementia-related diseases have become a hot topic in public health research. In recent years, human epidemiological studies have focused on lipid metabolism disorders and dementia. The efficacy of phytosterol intake as a cholesterol-lowering agent has been demonstrated. Phytosterols directly serve as ligands of the nuclear receptors, peroxisome proliferator-activated receptors (PPARs), activating Sirtuin 1 (SIRT-1), which are involved in the regulation of lipid metabolism and the pathogenesis of dementia. Moreover, phytosterols mediate cell and membrane cholesterol efflux or beta amyloid (Aβ) metabolism, which have preventative and therapeutic effects on dementia. Additionally, incorporation of plant sterols in lipid rafts can effectively reduce dietary fat and alter the dietary composition of fiber, fat and cholesterol to regulate appetite and calories. Overall, the objectives of this review are to explore whether phytosterols are a potentially effective target for the prevention of dementia and to discuss a possible molecular mechanism by which phytosterols play a role in the pathogenesis of dementia via the PPARs-SIRT-1 pathway.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Abbreviations

AD:

Alzheimer disease

Aβ:

Beta-amyloid

APP:

Amyloid precursor protein

PPARs:

Peroxisome proliferator activated receptors

SIRT-1:

Sirtuin1

PGC-1α:

Peroxlsome proliferator-activated receptor coactivator-1α

NAD:

Nicotinamide adenine dinucleotide

BBB:

Blood–brain barrier

24S-OHC:

24S-hydroxycholesterol

LXR:

Liver X receptor

ABCA1/G5/G8:

ATP-binding cassette

LDL:

Low density lipoprotein

HDL:

High density lipoprotein

APOE:

Apolipoprotein E

LDLR:

Low density lipoprotein receptor

LRP1:

LDL receptor related protein 1

RAGE:

Receptor for advanced glycation end products

SREBP-1c:

Sterol regulatory element binding protein-1c

CYP46A1:

24-hydroxylases enzyme

PPRE:

PPAR-responsive element

ADAM10:

A Disintegrin and Metalloproteinase 10

ROCK1:

RhoA protein1

P-tau:

Phosphorylated tau

NF-κB:

Nuclear receptor kappa B

References

  1. De-Paula VJ, Radanovic M, Diniz BS, Forlenza OV (2012) Alzheimer's disease. Subcell Biochem 65:329—352.

  2. Teunissen C, De Vente J, Von Bergmann K, Bosma H, Van Boxtel M, De Bruijn C, Jolles J, Steinbusch H, Lütjohann D (2003) Serum cholesterol, precursors and metabolites and cognitive performance in an aging population. Neurobiol Aging 24(1):147—155.

  3. van den Kommer TN, Dik MG, Comijs HC, Fassbender K, Lutjohann D, Jonker C (2009) Total cholesterol and oxysterols: early markers for cognitive decline in elderly? Neurobiol Aging 30(4):534—545.

  4. Wong WB, Lin VW, Boudreau D, Devine EB (2013) Statins in the prevention of dementia and Alzheimer's disease: a meta-analysis of observational studies and an assessment of confounding. Pharmacoepidemiol Drug Saf 22(4):345—358.

  5. Samaras K, Brodaty H, Sachdev PS (2016) Does statin use cause memory decline in the elderly? Trends Cardiovasc Med 26(6):550—565.

  6. Musa-Veloso K, Poon TH, Elliot JA, Chung C (2011) A comparison of the LDL-cholesterol lowering efficacy of plant stanols and plant sterols over a continuous dose range: results of a meta-analysis of randomized, placebo-controlled trials. Prostaglandins Leukot Essent Fatty Acids 85(1):9—28.

  7. Parraga-Martinez I, Lopez-Torres-Hidalgo JD, Del Campo-Del Campom JM, Galdon-Blesa MP, Precioso-Yanez JC, Rabanales-Sotos J, Garcia-Reyes-Ramos M, Andres-Pretel F, Navarro-Bravo B, Lloret-Callejo A (2015)Long-term effects of plant stanols on the lipid profile of patients With hypercholesterolemia. A randomized clinical trial. Rev Esp Cardiol (Engl Ed) 68(8):665–671

  8. Solati Z, Moghadasian MH (2015) Use of animal models in plant sterol and stanol research. J AOAC Int 98(3):691—696.

  9. Crichton GE, Bryan J, Murphy KJ (2013) Dietary antioxidants, cognitive function and dementia--a systematic review. Plant Foods Hum Nutr 68(3):279—292.

  10. Rudkowska I (2010) Plant sterols and stanols for healthy ageing. Maturitas 66(2):158—162.

  11. Vanmierlo T, Rutten K, van Vark-van der Zee LC, Friedrichs S, Bloks VW, Blokland A, Ramaekers FC, Sijbrands E, Steinbusch H, Prickaerts J, Kuipers F, Lutjohann D, Mulder M (2011) Cerebral accumulation of dietary derivable plant sterols does not interfere with memory and anxiety related behavior in Abcg5−/− mice. Plant Foods Hum Nutr 66(2):149—156.

  12. Vanmierlo T, Popp J, Kolsch H, Friedrichs S, Jessen F, Stoffel-Wagner B, Bertsch T, Hartmann T, Maier W, von Bergmann K, Steinbusch H, Mulder M, Lutjohann D (2011) The plant sterol brassicasterol as additional CSF biomarker in Alzheimer's disease. Acta Psychiatr Scand 124(3):184—192.

  13. Koivisto H, Grimm MO, Rothhaar TL, Berkecz R, Lutjohann DD, Giniatullina R, Takalo M, Miettinen PO, Lahtinen HM, Giniatullin R, Penke B, Janaky T, Broersen LM, Hartmann T, Tanila H (2014) Special lipid-based diets alleviate cognitive deficits in the APPswe/PS1dE9 transgenic mouse model of Alzheimer's disease independent of brain amyloid deposition. J Nutr Biochem 25(2):157—169.

  14. Vanmierlo T, Weingartner O, van der Pol S, Husche C, Kerksiek A, Friedrichs S, Sijbrands E, Steinbusch H, Grimm M, Hartmann T, Laufs U, Bohm M, de Vries HE, Mulder M, Lutjohann D (2012) Dietary intake of plant sterols stably increases plant sterol levels in the murine brain. J Lipid Res 53(4):726—735.

  15. Vanmierlo T, Bogie JF, Mailleux J, Vanmol J, Lutjohann D, Mulder M, Hendriks JJ (2015) Plant sterols: friend or foe in CNS disorders? Prog Lipid Res 58:26—39.

  16. Madigan JB, Wilcock DM, Hainsworth AH (2016) Vascular contributions to cognitive impairment and dementia: topical review of animal models. Stroke 47(7):1953–1959

    Article  Google Scholar 

  17. Kapasi A, Schneider JA (2016) Vascular contributions to cognitive impairment, clinical Alzheimer's disease, and dementia in older persons. Biochim Biophys Acta 1862(5):878–886

    Article  CAS  Google Scholar 

  18. Simons M, Keller P, Dichgans J, Schulz JB (2001) Cholesterol and Alzheimer’s disease is there a link? Neurology 57(6):1089—1093.

  19. Vanmierlo T, Bloks VW, van Vark-van der Zee LC, Rutten K, Kerksiek A, Friedrichs S, Sijbrands E, Steinbusch HW, Kuipers F, Lutjohann D, Mulder M (2010) Alterations in brain cholesterol metabolism in the APPSLxPS1mut mouse, a model for Alzheimer's disease. J Alzheimers Dis 19(1):117—127.

  20. Sun H-M, Chen L, Miao J-W (2014) The role of transporters ABCG1/4 and ABCA1 in brain cholesterol metabolism. Prog Biochem Biophys 41(8):765—776.

  21. Hardy J, Selkoe DJ (2002) The amyloid hypothesis of Alzheimer's disease: progress and problems on the road to therapeutics. Science 297(5580):353—356.

  22. Umeda T, Tomiyama T, Kitajima E, Idomoto T, Nomura S, Lambert MP, Klein WL, Mori H (2012) Hypercholesterolemia accelerates intraneuronal accumulation of Aβ oligomers resulting in memory impairment in Alzheimer's disease model mice. Life Sci 91(23—24):1169–1176

  23. Popp J, Lewczuk P, Kolsch H, Meichsner S, Maier W, Kornhuber J, Jessen F, Lutjohann D (2012) Cholesterol metabolism is associated with soluble amyloid precursor protein production in Alzheimer's disease. J Neurochem 123(2):310—316.

  24. Schneider A, Schulz-Schaeffer W, Hartmann T, Schulz JB, Simons M (2006) Cholesterol depletion reduces aggregation of amyloid-beta peptide in hippocampal neurons. Neurobiol Dis 23(3):573—577.

  25. Kojro E, Gimpl G, Lammich S, Marz W, Fahrenholz F (2001) Low cholesterol stimulates the nonamyloidogenic pathway by its effect on the alpha -secretase ADAM 10. Proc Natl Acad Sci USA 98(10):5815—5820.

  26. Guardia-Laguarta C, Coma M, Pera M, Clarimon J, Sereno L, Agullo JM, Molina-Porcel L, Gallardo E, Deng A, Berezovska O, Hyman BT, Blesa R, Gomez-Isla T, Lleo A (2009) Mild cholesterol depletion reduces amyloid-beta production by impairing APP trafficking to the cell surface. J Neurochem 110(1):220—230.

  27. Sakurai T, Kaneko K, Okuno M, Wada K, Kashiyama T, Shimizu H, Akagi T, Hashikawa T, Nukina N (2008) Membrane microdomain switching: a regulatory mechanism of amyloid precursor protein processing. J Cell Biol 183(2):339—352.

  28. Cao D, Fukuchi K, Wan H, Kim H, Li L (2006) Lack of LDL receptor aggravates learning deficits and amyloid deposits in Alzheimer transgenic mice. Neurobiol Aging 27(11):1632—1643.

  29. Deane R, Sagare A, Zlokovic BV (2008) The role of the cell surface LRP and soluble LRP in blood-brain barrier Abeta clearance in Alzheimer's disease. Curr Pharm Des 14(16):1601—1605.

  30. Storck SE, Meister S, Nahrath J, Meissner JN, Schubert N, Di Spiezio A, Baches S, Vandenbroucke RE, Bouter Y, Prikulis I, Korth C, Weggen S, Heimann A, Schwaninger M, Bayer TA, Pietrzik CU (2016) Endothelial LRP1 transports amyloid-beta(1-42) across the blood-brain barrier. J Clin Invest 126(1):123—136.

  31. Butterfield DA, Barone E, Mancuso C (2011) Cholesterol-independent neuroprotective and neurotoxic activities of statins: perspectives for statin use in Alzheimer disease and other age-related neurodegenerative disorders. Pharmacol Res 64(3):180—186.

  32. Kersten S, Desvergne B, Wahli W (2000) Roles of PPARs in health and disease. Nature 405(6785):421—424.

  33. van Raalte DH, Li M, Pritchard PH, Wasan KM (2004) Peroxisome proliferator-activated receptor (PPAR)-α: a pharmacological target with a promising future. Arch Pharm Res 21(9):1531—1538.

  34. Stunkel W, Campbell RM (2011) Sirtuin 1 (SIRT1): the misunderstood HDAC. J Biomol Screen 16(10):1153—1169.

  35. Tang BL, Chua CE (2008) SIRT1 and neuronal diseases. Mol Asp Med 29(3):187—200.

  36. Qin W, Zhao W, Ho L, Wang J, Walsh K, Gandy S, Pasinetti GM (2008) Regulation of forkhead transcription factor FoxO3a contributes to calorie restriction-induced prevention of Alzheimer's disease-type amyloid neuropathology and spatial memory deterioration. Ann NY Acad Sci 1147:335—347.

  37. Julien C, Tremblay C, Emond V, Lebbadi M, Salem N, Jr., Bennett DA, Calon F (2009) Sirtuin 1 reduction parallels the accumulation of tau in Alzheimer disease. J Neuropathol Exp Neurol 68(1):48—58.

  38. Dominy JE Jr, Lee Y, Gerhart-Hines Z, Puigserver P (2010) Nutrient-dependent regulation of PGC-1alpha's acetylation state and metabolic function through the enzymatic activities of Sirt1/GCN5. Biochim Biophys Acta 1804(8):1676—1683.

  39. Rodgers JT, Lerin C, Haas W, Gygi SP, Spiegelman BM, Puigserver P (2005) Nutrient control of glucose homeostasis through a complex of PGC-1α and SIRT1. Nature 434(7029):113—118.

  40. Han L, Zhou R, Niu J, McNutt MA, Wang P, Tong T (2010) SIRT1 is regulated by a PPAR{gamma}-SIRT1 negative feedback loop associated with senescence. Nucleic Acids Res 38(21):7458—7471.

  41. Robinson A, Grosgen S, Mett J, Zimmer VC, Haupenthal VJ, Hundsdorfer B, Stahlmann CP, Slobodskoy Y, Muller UC, Hartmann T, Stein R, Grimm, MO (2014) Upregulation of PGC-1alpha expression by Alzheimer's disease-associated pathway: presenilin 1/amyloid precursor protein (APP)/intracellular domain of APP. Aging cell 13(2):263—272.

  42. Burns MP, Vardanian L, Pajoohesh-Ganji A, Wang L, Cooper M, Harris DC, Duff K, Rebeck GW (2006) The effects of ABCA1 on cholesterol efflux and Abeta levels in vitro and in vivo. J Neurochem 98(3):792—800.

  43. Walker AK, Yang F, Jiang K, Ji JY, Watts JL, Purushotham A, Boss O, Hirsch ML, Ribich S, Smith JJ, Israelian K, Westphal CH, Rodgers JT, Shioda T, Elson SL, Mulligan P, Najafi-Shoushtari H, Black JC, Thakur JK, Kadyk LC, Whetstine JR, Mostoslavsky R, Puigserver P, Li X, Dyson NJ, Hart AC, Naar AM (2010) Conserved role of SIRT1 orthologs in fasting-dependent inhibition of the lipid/cholesterol regulator SREBP. Genes Dev 24(13):1403—1417.

  44. Ponugoti B, Kim DH, Xiao Z, Smith Z, Miao J, Zang M, Wu SY, Chiang CM, Veenstra TD, Kemper JK (2010) SIRT1 deacetylates and inhibits SREBP-1C activity in regulation of hepatic lipid metabolism. J Biol Chem 285(44):33959—33970.

  45. Wang S, Yang X, Lin Y, Qiu X, Li H, Zhao X, Cao L, Liu X, Pang Y, Wang X, Chi Z (2013) Cellular NAD depletion and decline of SIRT1 activity play critical roles in PARP-1-mediated acute epileptic neuronal death in vitro. Brain Res 1535:14—23.

  46. Majdalawieh A, Ro HS (2010) PPARgamma1 and LXRalpha face a new regulator of macrophage cholesterol homeostasis and inflammatory responsiveness, AEBP1. Nucl Recept Signal 8:e004.

  47. Chawla A, Boisvert WA, Lee CH, Laffitte BA, Barak Y, Joseph SB, Liao D, Nagy L, Edwards PA, Curtiss LK, Evans RM, Tontonoz P (2001) A PPAR gamma-LXR-ABCA1 pathway in macrophages is involved in cholesterol efflux and atherogenesis. Mol Cell 7(1):161—171.

  48. Skerrett R, Pellegrino MP, Casali BT, Taraboanta L, Landreth GE (2015) Combined liver X receptor/peroxisome proliferator-activated receptor gamma agonist treatment reduces amyloid beta levels and improves behavior in amyloid precursor protein/presenilin 1 mice. J Biol Chem 290(35):21591—21602.

  49. Ducheix S, Podechard N, Lasserre F, Polizzi A, Pommier A, Murzilli S, Di Lisio C, D'Amore S, Bertrand-Michel J, Montagner A, Pineau T, Loiseau N, Lobaccaro JM, Martin PG, Guillou H (2013) A systems biology approach to the hepatic role of the oxysterol receptor LXR in the regulation of lipogenesis highlights a cross-talk with PPARalpha. Biochimie 95(3):556—567.

  50. Yoshikawa T, Ide T, Shimano H, Yahagi N, Amemiya-Kudo M, Matsuzaka T, Yatoh S, Kitamine T, Okazaki H, Tamura Y, Sekiya M, Takahashi A, Hasty AH, Sato R, Sone H, Osuga J, Ishibashi S, Yamada N (2003) Cross-talk between peroxisome proliferator-activated receptor (PPAR) alpha and liver X receptor (LXR) in nutritional regulation of fatty acid metabolism. I. PPARs suppress sterol regulatory element binding protein-1c promoter through inhibition of LXR signaling. Mol Endocrinol 17(7):1240—1254.

  51. Gylling H, Simonen P (2015) Phytosterols, phytostanols, and lipoprotein metabolism. Nutrients 7(9):7965—7977.

  52. Ostlund REJr, McGill JB, Zeng CM, Covey DF, Stearns J, Stenson WF, Spilburg CA (2002) Gastrointestinal absorption and plasma kinetics of soy Delta(5)-phytosterols and phytostanols in humans. Am J Physiol Endocrinol Metab 282(4):E911—E916.

  53. Ikeda I (2015) Factors affecting intestinal absorption of cholesterol and plant sterols and stanols. J Oleo Sci 64(1):9—18.

  54. De Smet E, Mensink RP, Plat J (2012) Effects of plant sterols and stanols on intestinal cholesterol metabolism: suggested mechanisms from past to present. Mol Nutr Food Res 56(7):1058—1072.

  55. Saint-Pol J, Vandenhaute E, Boucau MC, Candela P, Dehouck L, Cecchelli R, Dehouck MP, Fenart L, Gosselet F (2012) Brain pericytes ABCA1 expression mediates cholesterol efflux but not cellular amyloid-beta peptide accumulation. J Alzheimers Dis 30(3):489—503.

  56. Jansen PJ, Lutjohann D, Abildayeva K, Vanmierlo T, Plosch T, Plat J, von Bergmann K, Groen AK, Ramaekers FC, Kuipers F, Mulder M (2006) Dietary plant sterols accumulate in the brain. Biochim Biophys Acta 1761(4):445—453.

  57. Christiansen L, Karjalainen M, Seppanen-Laakso T, Hiltunen R, Yliruusi J (2003) Effect of beta-sitosterol on precipitation of cholesterol from non-aqueous and aqueous solutions. Int J Pharm 254(2):155—166.

  58. Castellanos-Jankiewicz A, Del Bosque-Plata L, Tejero, ME (2014) Combined effect of plant sterols and dietary fiber for the treatment of hypercholesterolemia. Plant Foods Hum Nutr 69(2):93—100.

  59. Plat J, Nichols JA, Mensink RP (2005) Plant sterols and stanols: effects on mixed micellar composition and LXR (target gene) activation. J Lipid Res 46(11):2468—2476.

  60. Yu HL, Gao LF, Ma WW, Xie F, Bi YX, Yuan LH, Xi YD, Xiao YX, Li L, Xiao R (2013) The effects of phytosterol supplementation on serum LDL-C levels and learning ability in mice fed a high-fat, high-energy diet from gestation onward. Int J Food Sci Nutr 64(6):724—729.

  61. Park SJ, Kim DH, Jung JM, Kim JM, Cai M, Liu X, Hong JG, Lee CH, Lee KR, Ryu JH (2012) The ameliorating effects of stigmasterol on scopolamine-induced memory impairments in mice. Eur J Pharmacol 676(1–3):64—70.

  62. Wang J, Wu F, Shi C (2013) Substitution of membrane cholesterol with beta-sitosterol promotes nonamyloidogenic cleavage of endogenous amyloid precursor protein. Neuroscience 247:227—233.

  63. Burg VK, Grimm HS, Rothhaar TL, Grosgen S, Hundsdorfer B, Haupenthal VJ, Zimmer VC, Mett J, Weingartner O, Laufs U, Broersen LM, Tanila H, Vanmierlo T, Lutjohann D, Hartmann T, Grimm MO (2013) Plant sterols the better cholesterol in Alzheimer's disease? A mechanistical study. J Neurosci 33(41):16072—16087.

  64. Shi C, Liu J, Wu F, Zhu X, Yew DT, Xu J (2011) Beta-sitosterol inhibits high cholesterol-induced platelet beta-amyloid release. J Bioenerg Biomembr 43(6):691—697.

  65. Nomaguchi K, Tanaka M, Misawa E, Yamada M, Toida T, Iwatsuki K, Goto T, Kawada T (2011) Aloe vera hytosterols act as ligands for PPAR and improve the expression levels of PPAR target genes in the livers of mice with diet-induced obesity. Obes Res Clin Pract 5(3):e169—e266.

  66. Ikeda I, Konno R, Shimizu T, Ide T, Takahashi N, Kawada T, Nagao K, Inoue N, Yanagita T, Hamada T, Morinaga Y, Tomoyori H, Imaizumi K, Suzuki K (2006) Campest-5-en-3-one, an oxidized derivative of campesterol, activates PPARalpha, promotes energy consumption and reduces visceral fat deposition in rats. Biochim Biophys Acta 1760(5):800—807.

  67. Herskovits AZ, Guarente L (2014) SIRT1 in neurodevelopment and brain senescence. Neuron 81(3):471—483.

  68. Min SW, Cho SH, Zhou Y, Schroeder S, Haroutunian V, Seeley WW, Huang EJ, Shen Y, Masliah E, Mukherjee C, Meyers D, Cole PA, Ott M, Gan L (2010) Acetylation of tau inhibits its degradation and contributes to tauopathy. Neuron 67(6):953—966.

  69. Donmez G, Wang D, Cohen, DE, Guarente L (2010) SIRT1 suppresses beta-amyloid production by activating the alpha-secretase gene ADAM10. Cell 142(2):320—332.

  70. Qin W, Yang T, Ho L, Zhao Z, Wang J, Chen L, Zhao W, Thiyagarajan M, MacGrogan D, Rodgers JT, Puigserver P, Sadoshima J, Deng H, Pedrini S, Gandy S, Sauve AA, Pasinetti GM (2006) Neuronal SIRT1 activation as a novel mechanism underlying the prevention of Alzheimer disease amyloid neuropathology by calorie restriction. J Biol Chem 281(31):21745—21754.

  71. Little TJ, Feinle-Bisset C (2011) Effects of dietary fat on appetite and energy intake in health and obesity--oral and gastrointestinal sensory contributions. Physiol Behav 104(4):613—620.

  72. Whitmer RA (2007) The epidemiology of adiposity and dementia. Curr Alzheimer Res 4(2):117—122.

  73. Marwarha G, Raza S, Meiers C, Ghribi O (2014) Leptin attenuates BACE1 expression and amyloid-beta genesis via the activation of SIRT1 signaling pathway. Biochim Biophys Acta 1842(9):1587—1595.

  74. Han J, Yang Y, Feng M, Wang G (2007) Analysis of phytosterol contents in Chinese plant food and primary estimation of its intake of people. Wei Sheng Yan Jiu 36(3):301—305.

  75. Chen SC, Judd JT, Kramer M, Meijer GW, Clevidence BA, Baer DJ (2009) Phytosterol intake and dietary fat reduction are independent and additive in their ability to reduce plasma LDL cholesterol. Lipids 44(3):273—281.

  76. Solon-Biet SM, Mitchell SJ, Coogan SC, Cogger VC, Gokarn R, McMahon AC, Raubenheimer D, de Cabo R, Simpson SJ, Le Couteur DG (2015) Dietary protein to carbohydrate ratio and caloric restriction: comparing metabolic outcomes in mice. Cell Rep 11(10):1529—1534.

  77. Boily G, Seifert EL, Bevilacqua L, He XH, Sabourin G, Estey C, Moffat C, Crawford S, Saliba S, Jardine K, Xuan J, Evans M, Harper ME, McBurney MW (2008) SirT1 regulates energy metabolism and response to caloric restriction in mice. PLoS One 3(3):e1759

    Article  Google Scholar 

  78. Dacks PA, Moreno CL, Kim ES, Marcellino BK, Mobbs CV (2013) Role of the hypothalamus in mediating protective effects of dietary restriction during aging. Front Neuroendocrinol 34(2):95—106.

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Rong Shuang or Li Wenfang.

Ethics declarations

Conflict of Interest

All authors have read and approved the final manuscript. The authors declare no conflict of interest.

Additional information

Rong Shuang and Xu Rui contributed equally to this study and should be co-first author.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shuang, R., Rui, X. & Wenfang, L. Phytosterols and Dementia. Plant Foods Hum Nutr 71, 347–354 (2016). https://doi.org/10.1007/s11130-016-0574-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11130-016-0574-1

Keywords

Navigation