Skip to main content
Log in

Post-quantum \(\kappa \)-to-1 trapdoor claw-free functions from extrapolated dihedral cosets

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

Noisy trapdoor claw-free function (NTCF) is a powerful post-quantum cryptographic tool that can efficiently constrain actions of untrusted quantum devices within a classical–quantum interactive cryptographic model. Although NTCF is powerful, its essence remains a 2-to-1 one-way function (NTCF\(^1_2\)), which is inefficient in some cryptographic tasks. This raises an intriguing question: Can NTCF be extended to higher dimensions based on standard cryptographic hardness assumptions? Inspired by the extrapolated dihedral cosets, this work focuses on developing many-to-one trapdoor claw-free functions with polynomially bounded preimage sizes. The main results can be summarized as follows: Firstly, we introduce the definition of \(\kappa \)-to-1 NTCF\(^1_{\kappa }\) where \(\kappa \) is a polynomial integer, and present an efficient construction of NTCF\(^1_{\kappa }\) assuming quantum hardness of the learning with errors (LWE) problem. Secondly, we illustrate a key application of NTCFs in establishing a reduction from the LWE problem to the dihedral coset problems (DCPs). Specifically, our approach, leveraging NTCF\(^1_2\) (resp. NTCF\(^1_{\kappa }\)), reveals a new quantum reduction pathway from the LWE problem to the DCP (resp. an extrapolated version of DCP). This reduction is the core cryptographic analysis tool for studying the resistance of lattice problems against quantum attacks. Finally, we demonstrate that NTCF\(^1_{\kappa }\) can be further reduced to NTCF\(^1_2\), thus preserving its usefulness in proofs of quantumness.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data availability

Data sharing is not applicable to this article as no datasets were generated or analyzed during the current study.

Notes

  1. QLWE assumes that the LWE problem is hard for any quantum polynomial-time algorithms.

  2. The term “proofs of quantumness” also known as “quantum supremacy,” is to demonstrate the quantum computational advantage.

  3. In fact, the bit c is evaluated by \(c=d\cdot (\mathcal {J}({\varvec{x}}_0) \oplus \mathcal {J}({\varvec{x}}_1))\) in [15], where \(\mathcal {J}(\cdot )\) is the binary representation function. For simplicity, we omit this function in the expression.

  4. Note that adding a polynomial-time quantum circuit in the quantum prover’s end is an intuitively reasonable assumption, which imposes no additional requirements on the computational power of the verifier and the prover compared to the original protocol in [15].

References

  1. Shor, P.W.: Algorithms for quantum computation: discrete logarithms and factoring. In: Proceedings 35th annual symposium on foundations of computer science. pp. 124–134. IEEE (1994). https://doi.org/10.1109/SFCS.1994.365700

  2. Zhou, L., Lin, J., Xie, Y.M., Lu, Y.S., Jing, Y., Yin, H.L., Yuan, Z.: Experimental quantum communication overcomes the rate-loss limit without global phase tracking. Phys. Rev. Lett. 130(25), 250801 (2023). https://doi.org/10.1103/PhysRevLett.130.250801

    Article  ADS  Google Scholar 

  3. Xie, Y.M., Lu, Y.S., Weng, C.X., Cao, X.Y., Jia, Z.Y., Bao, Y., Wang, Y., Fu, Y., Yin, Y., Chen, H.L., Chen, Z.B.: Breaking the rate-loss bound of quantum key distribution with asynchronous two-photon interference. PRX Quantum 3(2), 020315 (2022). https://doi.org/10.1103/PRXQuantum.3.020315

    Article  ADS  Google Scholar 

  4. Yin, H.L., Fu, Y., Li, C.L., Weng, C.X., Li, B.H., Gu, J., Lu, Y.S., Huang, S., Chen, Z.B.: Experimental quantum secure network with digital signatures and encryption. Natl. Sci. Rev. 10(4), nwac228 (2023). https://doi.org/10.1093/nsr/nwac228

    Article  ADS  Google Scholar 

  5. Cao, X.Y., Li, B.H., Wang, Y., Fu, Y., Yin, H.L., Chen, Z.B.: Experimental quantum e-commerce. Sci. Adv. 10(2), 3258 (2024). https://doi.org/10.1126/sciadv.adk3258

    Article  Google Scholar 

  6. Li, C.L., Fu, Y., Liu, W.B., Xie, Y.M., Li, B.H., Zhou, M.G., Yin, H.L., Chen, Z.B.: Breaking the rate-distance limitation of measurement-device-independent quantum secret sharing. Phys. Rev. Res. 5(3), 033077 (2023). https://doi.org/10.1103/PhysRevResearch.5.033077

    Article  Google Scholar 

  7. Li, C.L., Fu, Y., Liu, W.B., Xie, Y.M., Li, B.H., Zhou, M.G., Yin, H.L., Chen, Z.B.: Breaking universal limitations on quantum conference key agreement without quantum memory. Commun. Phys. 6(1), 122 (2023). https://doi.org/10.1038/s42005-023-01238-5

    Article  Google Scholar 

  8. Bernstein, D.J., Lange, T.: Post-quantum cryptography. Nature 549(7671), 188–194 (2017). https://doi.org/10.1038/nature23461

    Article  ADS  Google Scholar 

  9. Castryck, W., Decru, T.: An efficient key recovery attack on SIDH. In: Hazay, C., Stam, M. (eds) Advances in Cryptology - EUROCRYPT 2023. Lecture Notes in Computer Science, vol 14008. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-30589-4_15

  10. Alagic, G., Apon, D., Cooper, D., et al.: Status report on the third round of the NIST post-quantum cryptography standardization process. US Department of Commerce, NIST (2022). https://doi.org/10.6028/NIST.IR.8413

  11. Nejatollahi, H., Dutt, N., Ray, S., Regazzoni, F., Banerjee, I., Cammarota, R.: Post-quantum lattice-based cryptography implementations: a survey. ACM Comput. Surv. 51(6), 1–41 (2019). https://doi.org/10.1145/3292548

    Article  Google Scholar 

  12. Portmann, C., Renner, R.: Security in quantum cryptography. Rev. Mod. Phys. 94(2), 025008 (2022). https://doi.org/10.1103/RevModPhys.94.025008

    Article  ADS  MathSciNet  Google Scholar 

  13. Aaronson, S., Cojocaru, A., Gheorghiu, A., Kashefi, E.: Complexity-theoretic limitations on blind delegated quantum computation. In: 46th International colloquium on automata, languages, and programming (ICALP), 132, pp. 6:1-6:13, Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2019). https://doi.org/10.4230/LIPIcs.ICALP.2019.6

  14. Gheorghiu, A., Vidick, T.: Computationally-secure and composable remote state preparation. In: 2019 IEEE 60th annual symposium on foundations of computer science (FOCS). pp. 1024–1033. IEEE (2019). https://doi.org/10.1109/FOCS.2019.00066

  15. Brakerski, Z., Christiano, P., Mahadev, U., Vazirani, U., Vidick, T.: A cryptographic test of quantumness and certifiable randomness from a single quantum device. In: 2018 IEEE 59th annual symposium on foundations of computer science (FOCS). pp. 320–331. IEEE Computer Society (2018). https://doi.org/10.1109/FOCS.2018.00038

  16. Mahadev, U.: Classical homomorphic encryption for quantum circuits. In: 2018 IEEE 59th Annual symposium on foundations of computer science (FOCS). pp. 332–338. IEEE Computer Society (2018). https://doi.org/10.1109/FOCS.2018.00039

  17. Mahadev, U.: Classical verification of quantum computations. In: 2018 IEEE 59th annual symposium on foundations of computer science (FOCS). pp. 259–267. IEEE (2018) https://doi.org/10.1109/FOCS.2018.00033

  18. Radian, R.: Semi-quantum money. In: Proceedings of the 1st ACM conference on advances in financial technologies. pp. 132–146 (2019). https://doi.org/10.1145/3318041.3355462

  19. Zhandry, M.: Quantum lightning never strikes the same state twice or: quantum money from cryptographic assumptions. J. Cryptol. 34(1), 1–56 (2021). https://doi.org/10.1007/s00145-020-09372-x

    Article  MathSciNet  Google Scholar 

  20. Brakerski, Z., Koppula, V., Vazirani, U., Vidick, T.: Simpler proofs of quantumness. arXiv preprint arXiv:2005.04826 (2020). doi: https://doi.org/10.48550/arXiv.2005.04826

  21. Liu, Z., Gheorghiu, A.: Depth-efficient proofs of quantumness. Quantum 6, 807 (2022). https://doi.org/10.22331/q-2022-09-19-807

    Article  Google Scholar 

  22. Kahanamoku-Meyer, G.D., Choi, S., Vazirani, U.V., Yao, N.Y.: Classically verifiable quantum advantage from a computational bell test. Nat. Phys. 18(8), 918–924 (2022). https://doi.org/10.1038/s41567-022-01643-7

    Article  Google Scholar 

  23. Alamati, N., Malavolta, G., Rahimi, A.: Candidate Trapdoor Claw-Free Functions from Group Actions with Applications to Quantum Protocols. In: Kiltz, E., Vaikuntanathan, V. (eds) Theory of Cryptography. TCC 2022. Lecture Notes in Computer Science, vol 13747. Springer, Cham (2022). doi: https://doi.org/10.1007/978-3-031-22318-1_10

  24. Alagic, G., Childs, A.M., Grilo, A.B., Hung, S.H.: Non-interactive classical verification of quantum computation. In: Theory of cryptography conference. pp. 153–180. Springer (2020). https://doi.org/10.1007/978-3-030-64381-2_6

  25. Mahadev, U., Vazirani, U., Vidick, T.: Efficient certifiable randomness from a single quantum device. arXiv preprint arXiv:2204.11353 (2022). https://doi.org/10.48550/arXiv.2204.11353

  26. Metger, T., Vidick, T.: Self-testing of a single quantum device under computational assumptions. Quantum 5, 544 (2021). https://doi.org/10.22331/q-2021-09-16-544

    Article  Google Scholar 

  27. Brakerski, Z., Kirshanova, E., Stehlé, D., Wen, W.: Learning with errors and extrapolated dihedral cosets. In: IACR international workshop on public key cryptography. pp. 702–727. Springer (2018).https://doi.org/10.1007/978-3-319-76581-5_24

  28. Poremba, A.: Quantum proofs of deletion for learning with errors. arXiv preprint arXiv:2203.01610 (2022). https://doi.org/10.48550/arXiv.2203.01610

  29. Grover, L., Rudolph, T.: Creating superpositions that correspond to efficiently integrable probability distributions. arXiv preprint quant-ph/0208112 (2002). https://doi.org/10.48550/arXiv.quant-ph/0208112

  30. Regev, O.: On lattices, learning with errors, random linear codes, and cryptography. J. ACM 56(6), 1–40 (2009). https://doi.org/10.1145/1568318.1568324

    Article  MathSciNet  Google Scholar 

  31. Micciancio, D., Peikert, C.: Trapdoors for lattices: simpler, tighter, faster, smaller. In: Annual international conference on the theory and applications of cryptographic techniques. pp. 700–718. Springer (2012). https://doi.org/10.1007/978-3-642-29011-4_41

  32. Simon, D.R.: On the power of quantum computation. SIAM J. Comput. 26(5), 1474–1483 (1997). https://doi.org/10.1137/S0097539796298637

    Article  MathSciNet  Google Scholar 

  33. Childs, A.M., Van Dam, W.: Quantum algorithms for algebraic problems. Rev. Mod. Phys. 82(1), 1 (2010). https://doi.org/10.1103/RevModPhys.82.1

    Article  ADS  MathSciNet  Google Scholar 

  34. Ettinger, M., Høyer, P.: On quantum algorithms for noncommutative hidden subgroups. Adv. Appl. Math. 25(3), 239–251 (2000). https://doi.org/10.1006/aama.2000.0699

    Article  MathSciNet  Google Scholar 

  35. Regev, O.: Quantum computation and lattice problems. In: Proceedings of the 43rd symposium on foundations of computer science. pp. 520–529 (2002). https://doi.org/10.1137/S0097539703440678

  36. Chen, Y., Liu, Q., Zhandry, M.: Quantum algorithms for variants of average-case lattice problems via filtering. In: Annual international conference on the theory and applications of cryptographic techniques. pp. 372–401. Springer (2022). https://doi.org/10.1007/978-3-031-07082-2_14

  37. Bacon, D., Childs, A.M., van Dam, W.: Optimal measurements for the dihedral hidden subgroup problem. arXiv preprint quant-ph/0501044 (2005). https://doi.org/10.4086/cjtcs.2006.002

  38. Kuperberg, G.: A subexponential-time quantum algorithm for the dihedral hidden subgroup problem. SIAM J. Comput. 35(1), 170–188 (2005). https://doi.org/10.1137/S0097539703436345

    Article  MathSciNet  Google Scholar 

  39. Regev, O.: A subexponential time algorithm for the dihedral hidden subgroup problem with polynomial space. arXiv preprint quant-ph/0406151 (2004). https://doi.org/10.48550/arXiv.quant-ph/0406151

  40. Kuperberg, G.: Another subexponential-time quantum algorithm for the dihedral hidden subgroup problem. arXiv preprint arXiv:1112.3333 (2011). https://doi.org/10.48550/arXiv.1112.3333

  41. Friedl, K., Ivanyos, G., Magniez, F., Santha, M., Sen, P.: Hidden translation and orbit coset in quantum computing. In: Proceedings of the thirty-fifth annual ACM symposium on theory of computing. pp. 1–9 (2003). https://doi.org/10.1145/780542.780544

  42. Friedl, K., Ivanyos, G., Magniez, F., Santha, M., Sen, P.: Hidden translation and translating coset in quantum computing. SIAM J. Comput. 43(1), 1–24 (2014). https://doi.org/10.1137/130907203

    Article  MathSciNet  Google Scholar 

  43. Ivanyos, G., Prakash, A., Santha, M.: On learning linear functions from subset and its applications in quantum computing. In: 26th Annual European symposium on algorithms (ESA 2018). Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik (2018). http://drops.dagstuhl.de/opus/volltexte/2018/9529

  44. Gentry, C.: A fully homomorphic encryption scheme. Stanford university (2009). https://doi.org/10.5555/1834954

Download references

Acknowledgements

The authors deeply thank Weiqiang Wen for many insightful exchanges and discussions. This work was supported by the National Key Research and Development Program of China (No. 2022YFB2702701), and the National Natural Science Foundation of China (NSFC) (No. 61972050).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xingyu Yan or Licheng Wang.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yan, X., Wang, L., Gu, L. et al. Post-quantum \(\kappa \)-to-1 trapdoor claw-free functions from extrapolated dihedral cosets. Quantum Inf Process 23, 188 (2024). https://doi.org/10.1007/s11128-024-04387-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11128-024-04387-w

Keywords

Navigation