Skip to main content
Log in

FSO-QKD protocols under free-space losses and device imperfections: a comparative study

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

Quantum key distribution (QKD) is a technique to establish a secret key between two parties through a quantum channel. Several QKD protocols have been proposed and implemented over optical fibers or free-space links. The main challenge of operating QKD protocols over a free-space link is free-space losses. In this paper, we have studied and compared the performance of single- and entangled-photon-based QKD protocols by evaluating the quantum bit error rate and secure key rate for terrestrial free-space quantum communication by considering different free-space losses, such as geometrical losses, atmospheric losses as well as device imperfections.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Notes

  1. Where \(|\uparrow \rangle (|\downarrow \rangle )=|H\rangle (|V\rangle ), |\nearrow \rangle (|\nwarrow \rangle )=\frac{|H\rangle +|V\rangle }{\sqrt{2}}\left( \frac{|H\rangle -|V\rangle }{\sqrt{2}}\right) ,\,|\circlearrowright \rangle (|\circlearrowleft \rangle )=\frac{|H\rangle + i|V\rangle }{\sqrt{2}}\left( \frac{|H\rangle - i|V\rangle }{\sqrt{2}}\right) \).

  2. We have considered Alice’s and Bob’s stations to be exposed to equal losses (\(T_{A}=T_{B}\)).

References

  1. Vernam, G.S.: Cipher printing telegraph systems: for secret wire and radio telegraphic communications. J. AIEE 45, 109–115 (1926)

    Google Scholar 

  2. Bennett, C.H., Brassard, G.: Quantum cryptography: public key distribution and coin tossing. In: Proceedings of IEEE International Conference on Computers, Systems and Signal Processing, Bangalore, India, 10–19 December 1984, pp. 175–179 (1984)

  3. Bruß, D.: Optimal eavesdropping in quantum cryptography with six states. Phys. Rev. Lett. 81, 3018 (1998)

    ADS  Google Scholar 

  4. Ekert, A.K.: Quantum cryptography based on Bell’s theorem. Phys. Rev. Lett. 67, 661 (1991)

    ADS  MathSciNet  Google Scholar 

  5. Bennett, C.H., Brassard, G., Mermin, N.D.: Quantum cryptography without Bell’ s theorem. Phys. Rev. Lett. 68, 557 (1992)

    ADS  MathSciNet  Google Scholar 

  6. Scarani, V., Bechmann-Pasquinucci, H., Cerf, N.J., Dušek, M., Lütkenhaus, N., Peev, M.: The security of practical quantum key distribution. Rev. Mod. Phys. 81, 1301 (2009)

    ADS  Google Scholar 

  7. Xu, F., Ma, X., Zhang, Q., Lo, H.K., Pan, J.W.: Secure quantum key distribution with realistic devices. Rev. Mod. Phys. 92, 025002 (2020)

    ADS  MathSciNet  Google Scholar 

  8. Inamori, H., Rallan, L., Vedral, V.: Security of EPR-based quantum cryptography against incoherent symmetric attacks. J. Phys. A Math. Theor. 34, 6913 (2001)

    ADS  MathSciNet  Google Scholar 

  9. Gisin, N., Ribordy, G., Tittel, W., Zbinden, H.: Quantum cryptography. Rev. Mod. Phys. 74, 145 (2002)

    ADS  Google Scholar 

  10. Bechmann-Pasquinucci, H., Gisin, N.: Incoherent and coherent eavesdropping in the six-state protocol of quantum cryptography. Phys. Rev. A 59, 4238 (1999)

    ADS  MathSciNet  Google Scholar 

  11. Lo, H.K.: Proof of unconditional security of six-state quantum key distribution scheme. Quantum Inf. Comput. 1, 81 (2001)

    MathSciNet  Google Scholar 

  12. Koashi, M., Preskill, J.: Secure quantum key distribution with an uncharacterized source. Phys. Rev. Lett. 90, 057902 (2003)

    ADS  Google Scholar 

  13. Pirandola, S., Andersen, U.L., Banchi, L., et al.: Advances in quantum cryptography. Adv. Opt. Photon. 12, 1012–236 (2020)

    Google Scholar 

  14. Shor, P.W., Preskil, L.J.: Simple proof of security of the BB84 quantum key distribution protocol. Phys. Rev. Lett. 85, 441 (2000)

    ADS  Google Scholar 

  15. Bennett, C.H., Brassard, G.: Experimental quantum cryptography: the dawn of a new era for quantum cryptography: the experimental prototype is working! ACM Sigact News 20, 78–80 (1989)

    Google Scholar 

  16. Boaron, A., Boso, G., Rusca, D., et al.: Secure quantum key distribution over 421 km of optical fiber. Phys. Rev. Lett. 121, 190502 (2018)

    ADS  Google Scholar 

  17. Korzh, B., Lim, C.C.W., Houlmann, R., Gisin, N., et al.: Provably secure and practical quantum key distribution over 307 km of optical fibre. Nat. Photon. 9, 163–168 (2015)

    ADS  Google Scholar 

  18. Shi, Y., Moe-Thar, S., Poh, H.S., Grieve, J.A., et al.: Stable polarization entanglement based quantum key distribution over a deployed metropolitan fiber. Appl. Phys. Lett. 117, 124002 (2020)

    ADS  Google Scholar 

  19. Yin, H.L., Chen, T.Y., Yu, Z.W., Liu, H., et al.: Measurement-device-independent quantum key distribution over a 404 km optical fiber. Phys. Rev. Lett. 117, 190501 (2016)

    ADS  Google Scholar 

  20. Marcikic, I., Lamas-Linares, A., Kurtsiefer, C.: Free-space quantum key distribution with entangled photons. Appl. Phys. Lett. 89, 101122 (2006)

    ADS  Google Scholar 

  21. Peloso, M.P., Gerhardt, I., Ho, C., Lamas-Linares, A., Kurtsiefer, C.: Daylight operation of a free space, entanglement-based quantum key distribution system. New J. Phys. 11, 045007 (2009)

    ADS  Google Scholar 

  22. Erven, C., Couteau, C., Laflamme, R., Weihs, G.: Entangled quantum key distribution over two free-space optical links. Opt. Express 16, 16840–16853 (2008)

    ADS  Google Scholar 

  23. Scheidl, T., Ursin, R., Fedrizzi, A., et al.: Feasibility of 300 km quantum key distribution with entangled states. New J. Phys. 11, 085002 (2009)

    ADS  Google Scholar 

  24. Ursin, R., Tiefenbacher, F., Schmitt-Manderbach, T., Weier, H., et al.: Entanglement-based quantum communication over 144 km. Nat. Phys. 3, 481–486 (2007)

    Google Scholar 

  25. Schmitt-Manderbach, T., Weier, H., Fürst, M., Ursin, R., Tiefenbacher, F., et al.: Experimental demonstration of free space decoy-state quantum key distribution over 144 km. Phys. Rev. Lett. 98, 010504 (2007)

    ADS  Google Scholar 

  26. Yin, J., Cao, Y., Li, Y.H., Ren, J.G., Liao, S.K., et al.: Satellite-to-ground entanglement-based quantum key distribution. Phys. Rev. Lett. 119, 200501 (2017)

    ADS  Google Scholar 

  27. Liao, S.K., Cai, W.Q., Liu, W.Y., Zhang, L., et al.: Satellite-to-ground quantum key distribution. Nature 549, 43–47 (2017)

    ADS  Google Scholar 

  28. Takenaka, H., Carrasco-Casado, A., Fujiwara, M., Kitamura, M., Sasaki, M., Toyoshima, M.: Satellite-to-ground quantum-limited communication using a 50-kg-class microsatellite. Nat. Photon. 11, 502–508 (2017)

    Google Scholar 

  29. Yin, J., Li, Y.H., Liao, S.K., Yang, M., Cao, Y., et al.: Entanglement-based secure quantum cryptography over 1,120 kilometres. Nature 582, 501–505 (2020)

    ADS  Google Scholar 

  30. Basso Basset, F., Valeri, M., Roccia, E., et al.: Quantum key distribution with entangled photons generated on demand by a quantum dot. Sci. Adv. 7, 6379 (2021)

    ADS  Google Scholar 

  31. Villaseñ, E., Malaney, R., Mudge, K.A., Grant, K.J.: Atmospheric effects on satellite-to-ground quantum key distribution using coherent states. In: GLOBECOM 2020–2020 IEEE Global Communications Conference, pp. 1–6. IEEE (2020)

  32. Liorni, C., Kampermann, H., Bruß, D.: Satellite-based links for quantum key distribution: beam effects and weather dependence. New J. Phy. 21, 093055 (2019)

    ADS  Google Scholar 

  33. Liao, S.K., Yong, H.L., Liu, C., et al.: Long-distance free-space quantum key distribution in daylight towards inter-satellite communication. Nat. Photon. 11, 509–513 (2017)

    Google Scholar 

  34. Mushtaq, M.T., Yasir, S.M., Khan, M.S., Wahid, A., Iqbal, M.S.: Analysis of internal design parameters to minimize geometrical losses in free-space optical communication link. Acta Phys. Polonica A 134, 275–277 (2018)

    ADS  Google Scholar 

  35. Bloom, S., Korevaar, E., Schuster, J., Willebrand, H.: Understanding the performance of free-space optics. J. Opt. Netw. 2, 178–200 (2003)

    Google Scholar 

  36. Ntanos, A., Zavitsanos, D., Lyras, N.K., et al.: On the availability of the Decoy State BB84 QKD over a Terrestrial FSO Link. In: 2021 International Conference on Optical Network Design and Modeling (ONDM), 1–6. IEEE (2021)

  37. Tang, X.: Polarisation shift keying modulated free-space optical communication systems. University of Northumbria at Newcastle (United Kingdom) (2012)

  38. Aharonovich, I., Castelletto, S., Simpson, D.A., et al.: Diamond-based single-photon emitters. Rep. Prog. Phys. 74, 076501 (2011)

    ADS  Google Scholar 

  39. Pelton, M., Santori, C., Vuckovi, J., et al.: Efficient source of single photons: a single quantum dot in a micropost microcavity. Phys. Rev. Lett. 89, 233602 (2002)

    ADS  Google Scholar 

  40. McKeever, J., Boca, A., Boozer, A.D., et al.: Deterministic generation of single photons from one atom trapped in a cavity. Science 303, 1992–1994 (2004)

    ADS  Google Scholar 

  41. Higginbottom, D.B., Slodicka, L., Araneda, G., et al.: Pure single photons from a trapped atom source. New J. Phys. 18, 093038 (2004)

    Google Scholar 

  42. Steinlechner, F., Trojek, P., Jofre, M., Weier, H., Perez, D., et al.: A high-brightness source of polarization-entangled photons optimized for applications in free space. Opt. Express 20, 9640 (2012)

    ADS  Google Scholar 

  43. Bell, J.S.: On the Einstein Podolsky Rosen paradox. Phys. Phys. Fizika 1, 195 (1964)

    MathSciNet  Google Scholar 

  44. Semenov, A.A., Vogel, W.: Entanglement transfer through the turbulent atmosphere. Phys. Rev. A 81, 023835 (2010)

    ADS  Google Scholar 

  45. Acin, A., Gisin, N., Masanes, L.: From Bell’ s theorem to secure quantum key distribution. Phys. Rev. Lett. 97, 120405 (2006)

    ADS  Google Scholar 

  46. Acin, A., Brunner, N., Gisin, N., et al.: Device-independent security of quantum cryptography against collective attacks. Phys. Rev. Lett. 98, 230501 (2007)

    ADS  Google Scholar 

  47. Ma, X., Fung, C.H.F., Lo, H.K.: Quantum key distribution with entangled photon sources. Phys. Rev. A 76, 012307 (2007)

    ADS  Google Scholar 

  48. Waks, E., Santori, C., Yamamoto, Y.: Security aspects of quantum key distribution with sub-Poisson light. Phys. Rev. A 66, 042315 (2002)

    ADS  Google Scholar 

Download references

Acknowledgements

The authors thankfully acknowledge the following funding agencies: Council of Scientific Industrial Research (CSIR), India (09/086(1331)/2018-EMR-I), and Defence Research and Development Organisation, India (DFTM/03/3203/P/07/JATC-P2QP-07/463/D), for a project grant.

Author information

Authors and Affiliations

Authors

Contributions

M.S. did design thinking, investigation, analysis, and manuscript writing. OM contributed to the figures’ preparation and manuscript writing. V.V. and J.G. supervised the manuscript. All authors reviewed the manuscript

Corresponding authors

Correspondence to Mitali Sisodia or Joyee Ghosh.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sisodia, M., Omshankar, Venkataraman, V. et al. FSO-QKD protocols under free-space losses and device imperfections: a comparative study. Quantum Inf Process 23, 185 (2024). https://doi.org/10.1007/s11128-024-04382-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11128-024-04382-1

Keywords

Navigation