Skip to main content
Log in

Analysis of atmospheric effects on satellite-based quantum communication: a comparative study

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

Quantum key distribution (QKD) is a key exchange protocol which is implemented over free space optical links or optical fiber cable. When direct communication is not possible, QKD is performed over fiber cables, but the imperfections in detectors used at the receiver side and also the material properties of fiber cables limit the long-distance communication. Free space-based QKD is free from such limitations and can pave the way for satellite-based quantum communication to set up a global network for sharing secret messages. To implement free space optical links, it is essential to study the effect of atmospheric turbulence. Here, an analysis is made for satellite-based quantum communication using QKD protocols. We assume two specific attacks, namely PNS (photon number splitting) and IRUD (intercept-resend with unambiguous discrimination), which could be main threats for future QKD-based satellite applications. The key generation rates and the error rates of the considered QKD protocols are presented. Other parameters such as optimum signal and decoy states mean photon numbers are calculated for each protocol and distance. Further, in SARG04 QKD protocol with two decoy states, the optimum signal-state mean photon number is independent of the link distance and is valid for the attacks considered here. This is significant, highlighting its use in a realistic scenario of satellite quantum communication.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Bennett, C.H., Brassard, G.: Quantum cryptography: public key distribution and coin tossing. In: Proceedings of IEEE International Conference on Computers, Systems and Signal Processing, Bangalore, India, 10-19 December 1984, pp. 175–179 (1984)

  2. Shenoy, A., Pathak, A., Srikanth, R.: Quantum cryptography: key distribution and beyond. Quanta 6, 1–47 (2017)

    MathSciNet  Google Scholar 

  3. Scarani, V., Bechmann-Pasquinucci, H., Cerf, N.J., Dušek, M., Lütkenhaus, N., Peev, M.: The security of practical quantum key distribution. Rev. Mod. Phys. 81(3), 1301 (2009)

    ADS  Google Scholar 

  4. Srinatha, N., Omkar, S., Srikanth, R., Banerjee, S., Pathak, A.: The quantum cryptographic switch. Quantum Inf. Process. 13, 59–70 (2014)

    ADS  Google Scholar 

  5. Sangouard, N., Simon, C., De Riedmatten, H., Gisin, N.: Quantum repeaters based on atomic ensembles and linear optics. Rev. Mod. Phys. 83(1), 33 (2011)

    ADS  Google Scholar 

  6. Bussières, F., Sangouard, N., Afzelius, M., de Riedmatten, H., Simon, C., Tittel, W.: Prospective applications of optical quantum memories. J. Mod. Opt. 60(18), 1519–1537 (2013)

    MathSciNet  MATH  ADS  Google Scholar 

  7. Guha, S., Krovi, H., Fuchs, C.A., Dutton, Z., Slater, J.A., Simon, C., Tittel, W.: Rate-loss analysis of an efficient quantum repeater architecture. Phys. Rev. A 92(2), 022357 (2015)

    ADS  Google Scholar 

  8. Munro, W.J., Stephens, A.M., Devitt, S.J., Harrison, K.A., Nemoto, K.: Quantum communication without the necessity of quantum memories. Nat. Photon. 6(11), 777–781 (2012)

    ADS  Google Scholar 

  9. Azuma, K., Tamaki, K., Lo, H.-K.: All-photonic quantum repeaters. Nat. Commun. 6, 6787 (2015)

    ADS  Google Scholar 

  10. Muralidharan, S., Kim, J., Lütkenhaus, N., Lukin, M.D., Jiang, L.: Ultrafast and fault-tolerant quantum communication across long distances. Phys. Rev. Lett. 112(25), 250501 (2014)

    ADS  Google Scholar 

  11. Boone, K., Bourgoin, J.-P., Meyer-Scott, E., Heshami, K., Jennewein, T., Simon, C.: Entanglement over global distances via quantum repeaters with satellite links. Phys. Rev. A 91(5), 052325 (2015)

    ADS  Google Scholar 

  12. Thapliyal, K., Pathak, A.: Applications of quantum cryptographic switch: various tasks related to controlled quantum communication can be performed using Bell states and permutation of particles. Quantum Inf. Process. 14(7), 2599–2616 (2015)

    MathSciNet  MATH  ADS  Google Scholar 

  13. Pathak, A.: Elements of Quantum Computation and Quantum Communication. CRC Press, Boca Raton (2013)

    MATH  Google Scholar 

  14. Shukla, C., Alam, N., Pathak, A.: Protocols of quantum key agreement solely using Bell states and Bell measurement. Quantum Inf. Process. 13(11), 2391–2405 (2014)

    MathSciNet  MATH  ADS  Google Scholar 

  15. Schmitt-Manderbach, T., Weier, H., Fürst, M., Ursin, R., Tiefenbacher, F., Scheidl, T., Perdigues, J., Sodnik, Z., Kurtsiefer, C., Rarity, J.G., et al.: Experimental demonstration of free-space decoy-state quantum key distribution over 144 km. Phys. Rev. Lett. 98(1), 010504 (2007)

    ADS  Google Scholar 

  16. Lo, H.-K., Ma, X., Chen, K.: Decoy state quantum key distribution. Phys. Rev. Lett. 94(23), 230504 (2005)

    ADS  Google Scholar 

  17. Wang, X.-B.: Beating the photon-number-splitting attack in practical quantum cryptography. Phys. Rev. Lett. 94(23), 230503 (2005)

    ADS  Google Scholar 

  18. Ma, X., Qi, B., Zhao, Y., Lo, H.-K.: Practical decoy state for quantum key distribution. Phys. Rev. A 72(1), 012326 (2005)

    ADS  Google Scholar 

  19. Liu, Y., Chen, T.-Y., Wang, J., Cai, W.-Q., Wan, X., Chen, L.-K., Wang, J.-H., Liu, S.-B., Liang, H., Yang, L., et al.: Decoy-state quantum key distribution with polarized photons over 200 km. Opt. Express 18(8), 8587–8594 (2010)

    ADS  Google Scholar 

  20. Pugh, C.J., Kaiser, S., Bourgoin, J.-P., Jin, J., Sultana, N., Agne, S., Anisimova, E., Makarov, V., Choi, E., Higgins, B.L., et al.: Airborne demonstration of a quantum key distribution receiver payload. Quantum Sci. Technol. 2(2), 024009 (2017)

    ADS  Google Scholar 

  21. Liao, S.-K., Lin, J., Ren, J.-G., Liu, W.-Y., Qiang, J., Yin, J., Li, Y., Shen, Q., Zhang, L., Liang, X.-F., et al.: Space-to-ground quantum key distribution using a small-sized payload on tiangong-2 space lab. Chin. Phys. Lett. 34(9), 090302 (2017)

    ADS  Google Scholar 

  22. Gisin, N., Ribordy, G., Tittel, W., Zbinden, H.: Quantum cryptography. Rev. Mod. Phys. 74(1), 145 (2002)

    MATH  ADS  Google Scholar 

  23. Carbonneau, T.H., Wisely, D.R.: Opportunities and challenges for optical wireless: the competitive advantage of free space telecommunications links in today’s crowded marketplace. In: Voice, Video, and Data Communications, pp. 119–128. International Society for Optics and Photonics (1998)

  24. Bennett, C.H., Bessette, F., Brassard, G., Salvail, L., Smolin, J.: Experimental quantum cryptography. J. Cryptol. 5(1), 3–28 (1992)

    MATH  Google Scholar 

  25. Zbinden, H., Gisin, N., Huttner, B., Muller, A., Tittel, W.: Practical aspects of quantum cryptographic key distribution. J. Cryptol. 13(2), 207–220 (2000)

    MATH  Google Scholar 

  26. Owens, P.C.M., Rarity, J.G., Tapster, P.R., Knight, D., Townsend, P.D.: Photon counting with passively quenched germanium avalanche. Appl. Opt. 33(30), 6895–6901 (1994)

    ADS  Google Scholar 

  27. Hughes, R.J., Nordholt, J.E., Derkacs, D., Peterson, C.G.: Practical free-space quantum key distribution over 10 km in daylight and at night. New J. Phys. 4(1), 43 (2002)

    ADS  Google Scholar 

  28. Resch, K.J., Lindenthal, M., Blauensteiner, B., Böhm, H.R., Fedrizzi, A., Kurtsiefer, C., Poppe, A., Schmitt-Manderbach, T., Taraba, M., Ursin, R., et al.: Distributing entanglement and single photons through an intra-city, free-space quantum channel. Opt. Express 13(1), 202–209 (2005)

    ADS  Google Scholar 

  29. Mayers, D.: Unconditional security in quantum cryptography. J. ACM (JACM) 48(3), 351–406 (2001)

    MathSciNet  MATH  Google Scholar 

  30. Shields, A., Yuan, Z.: Key to the quantum industry. Phys. World 20(3), 24 (2007)

    Google Scholar 

  31. Sharbaf, M.S.: Quantum cryptography: an emerging technology in network security. In: Technologies for Homeland Security (HST), 2011 IEEE International Conference on, pp. 13–19. IEEE (2011)

  32. Buttler, W.T., Hughes, R.J., Kwiat, P.G., Lamoreaux, S.K., Luther, G.G., Morgan, G.L., Nordholt, J.E., Peterson, C.G., Simmons, C.M.: Practical free-space quantum key distribution over 1 km. Phys. Rev. Lett. 81(15), 3283 (1998)

    MATH  ADS  Google Scholar 

  33. Kurtsiefer, C., Zarda, P., Halder, M., Gorman, P.M., Tapster, P.R., Rarity, J.G., Weinfurter, H.: Long-distance free-space quantum cryptography. In: Photonics Asia 2002, pp. 25–31. International Society for Optics and Photonics (2002)

  34. Sharma, V.: Effect of noise on practical quantum communication systems. Def. Sci. J. 66(2), 186–192 (2016)

    Google Scholar 

  35. Omkar, S., Srikanth, R., Banerjee, S.: Dissipative and non-dissipative single-qubit channels: dynamics and geometry. Quantum Inf. Process. 12(12), 3725–3744 (2013)

    MathSciNet  MATH  ADS  Google Scholar 

  36. Sharma, V., Sharma, R.: Analysis of spread spectrum in MATLAB. Int. J. Sci. Eng. Res. 5(1), 1899–1902 (2014)

    Google Scholar 

  37. Bedington, R., Arrazola, J.M., Ling, A.: Progress in satellite quantum key distribution. NPJ Quantum Inf. 3(1), 30 (2017)

    ADS  Google Scholar 

  38. Sharma, V., Shrikant, U., Srikanth, R., Banerjee, S.: Decoherence can help quantum cryptographic security. Quantum Inf. Process. 17(8), 207 (2018)

    MathSciNet  MATH  ADS  Google Scholar 

  39. Sharma, V., Banerjee, S.: Analysis of quantum key distribution based satellite communication. In: 2018 9th International Conference on Computing, Communication and Networking Technologies (ICCCNT), pp. 1–5. IEEE (2018)

  40. Raj, A.B., Sharma, V., Banerjee, S.: Principles and Applications of Free Space Optical Communication, Chapter 19. ISBN: 978-1-78561-415-6. IET, UK (2018)

  41. Khan, I., Heim, B., Neuzner, A., Marquardt, C.: Satellite-Based QKD. Opt. Photon. News Opt. Soc. Am. 29(2), 26–33 (2018)

    ADS  Google Scholar 

  42. Calderaro, L., Agnesi, C., Dequal, D., Vedovato, F., Schiavon, M., Santamato, A., Luceri, V., Bianco, G., Vallone, G., Villoresi, P.: Towards quantum communication from global navigation satellite system. ArXiv preprint arXiv:1804.05022 (2018)

  43. Yin, J., Cao, Y., Li, Y.-H., Liao, S.-K., Zhang, L., Ren, J.-G., Cai, W.-Q., Liu, W.-Y., Li, B., Dai, H., et al.: Satellite-based entanglement distribution over 1200 kilometers. Science 356(6343), 1140–1144 (2017)

    Google Scholar 

  44. Ren, J.-G., Xu, P., Yong, H.-L., Zhang, L., Liao, S.-K., Yin, J., Liu, W.-Y., Cai, W.-Q., Yang, M., Li, L., et al.: Ground-to-satellite quantum teleportation. Nature 549(7670), 70 (2017)

    ADS  Google Scholar 

  45. Liao, S.-K., Cai, W.-Q., Liu, W.-Y., Zhang, L., Li, Y., Ren, J.-G., Yin, J., Shen, Q., Cao, Y., Li, Z.-P., et al.: Satellite-to-ground quantum key distribution. Nature 549(7670), 43 (2017)

    ADS  Google Scholar 

  46. Liao, S.-K., Cai, W.-Q., Handsteiner, J., Liu, B., Yin, J., Zhang, L., Rauch, D., Fink, M., Ren, J.-G., Liu, W.-Y., et al.: Satellite-relayed intercontinental quantum network. Phys. Rev. Lett. 120(3), 030501 (2018)

    ADS  Google Scholar 

  47. Qi, B., Liu, S., Shen, Q., Liao, S., Cai, W., Lin, Z., Liu, W., Peng, C., An, Q.: A compact readout electronics for the ground station of a quantum communication satellite. IEEE Trans. Nucl. Sci. 62(3), 883–888 (2015)

    ADS  Google Scholar 

  48. Rarity, J.G., Tapster, P.R., Gorman, P.M., Knight, P.: Ground to satellite secure key exchange using quantum cryptography. New J. Phys. 4(1), 82 (2002)

    ADS  Google Scholar 

  49. Aspelmeyer, M., Jennewein, T., Pfennigbauer, M., Leeb, W.R., Zeilinger, A.: Long-distance quantum communication with entangled photons using satellites. IEEE J. Sel. Top. Quantum Electron. 9(6), 1541–1551 (2003)

    ADS  Google Scholar 

  50. Nordholt, J.E., Hughes, R.J., Morgan, G.L., Peterson, C.G., Wipf, C.C.: Present and future free-space quantum key distribution. In: Free-Space Laser Communication Technologies XIV, International Society for Optics and Photonics, vol. 4635, pp. 116–127 (2002)

  51. Kurtsiefer, C., Zarda, P., Halder, M., Weinfurter, H., Gorman, P.M., Tapster, P.R., Rarity, J.G.: Quantum cryptography: a step towards global key distribution. Nature 419(6906), 450 (2002)

    ADS  Google Scholar 

  52. Hughes, R., Nordholt, J.E., Morgan, G.L., Peterson, C.G.: Free space quantum key distribution over 10 km in daylight and at night. In: Nonlinear Optics: Materials, Fundamentals and Applications. Optical Society of America, FA2 (2002)

  53. Pfennigbauer, M., Aspelmeyer, M., Leeb, W., Baister, G., Dreischer, T., Jennewein, T., Neckamm, G., Perdigues, J., Weinfurter, H., Zeilinger, A.: Satellite-based quantum communication terminal employing state-of-the-art technology. J. Opt. Netw. 4(9), 549–560 (2005)

    Google Scholar 

  54. Buttler, W.T., Hughes, R.J., Lamoreaux, S.K., Morgan, G.L., Nordholt, J.E., Peterson, C.G.: Daylight quantum key distribution over 1.6 km. Phys. Rev. Lett. 84(24), 5652 (2000)

    ADS  Google Scholar 

  55. Lindenthal, M., Resch, K.J., Blauensteiner, B., Boehm, H.R., Fedrizzi, A., Poppe, A., Taraba, M., et al.: Long-distance free-space distribution of quantum entanglement over Vienna (2005)

  56. Fung, C.F., Tamaki, K., Qi, B., Lo, H.-K., Ma, X.: Security proof of quantum key distribution with detection efficiency mismatch. ArXiv preprint arXiv:0802.3788 (2008)

  57. Toyoshima, M., Takayama, Y., Klaus, W., Kunimori, H., Fujiwara, M., Sasaki, M.: Free-space quantum cryptography with quantum and telecom communication channels. Acta Astronaut. 63(1–4), 179–184 (2008)

    ADS  Google Scholar 

  58. Toyoshima, M., Takayama, Y., Kunimori, H., Takeoka, M., Fujiwara, M., Sasaki, M.: Development of the polarization tracking scheme for free-space quantum cryptography. In: Atmospheric Propagation V, vol. 6951, p. 695101. International Society for Optics and Photonics (2008)

  59. Toyoshima, M., Shoji, Y., Takayama, Y., Kunimori, H., Takeoka, M., Fujiwara, M., Sasaki, M.: Conceptual designs of onboard transceivers for ground-to-satellite quantum cryptography. In: Atmospheric Propagation VI, vol. 7324, p. 73240E. International Society for Optics and Photonics (2009)

  60. Ursin, R., Tiefenbacher, F., Schmitt-Manderbach, T., Weier, H., Scheidl, T., Lindenthal, M., Blauensteiner, B., Jennewein, T., Perdigues, J., Trojek, P., et al.: Entanglement-based quantum communication over 144 km. Nat. Phys. 3(7), 481–486 (2007)

    Google Scholar 

  61. Villoresi, P., Jennewein, T., Tamburini, F., Aspelmeyer, M., Bonato, C., Ursin, R., Pernechele, C., Luceri, V., Bianco, G., Zeilinger, A., et al.: Experimental verification of the feasibility of a quantum channel between space and Earth. New J. Phys. 10(3), 033038 (2008)

    ADS  Google Scholar 

  62. Wang, J.-Y., Yang, B., Liao, S.-K., Zhang, L., Shen, Q., Hu, X.-F., Wu, J.-C., Yang, S.-J., Jiang, H., Tang, Y.-L., et al.: Direct and full-scale experimental verifications towards ground-satellite quantum key distribution. Nat. Photon. 7(5), 387 (2013)

    ADS  Google Scholar 

  63. Hughes, R.J., Buttler, W.T., Kwiat, P.G., Lamoreuax, S.K., Morgan, G.L., Nordholt, J.E., Peterson, C.G.: Quantum cryptography for secure satellite communications. In: Aerospace Conference Proceedings, 2000 IEEE, vol. 1, pp. 191–200 (2000)

  64. Hughes, R.J., Buttler, W.T., Lamoreaux, S.K., Morgan, G.L., Nordholt, J.E., Peterson, C.G., Kwiat, P.G.: Method and apparatus for free-space quantum key distribution in daylight. US Patent 6,748,083, Google Patents (2004)

  65. Bourgoin, J.P., Meyer-Scott, E., Higgins, B.L., Helou, B., Erven, C., Huebel, H., Kumar, B., Hudson, D., D’Souza, I., Girard, R., et al.: A comprehensive design and performance analysis of low Earth orbit satellite quantum communication. New J. Phys. 15(2), 023006 (2013)

    ADS  Google Scholar 

  66. Hughes, R.J., Buttler, W.T., Kwiat, P.G., Luther, G.G., Morgan, G.L., Nordholt, J.E., Peterson, C.G., Simmons, C.M.: Secure communications with low-orbit spacecraft using quantum cryptography. US Patent 5,966,224, Google Patents (1999)

  67. Nelson, E.A., O’meara, M.B.: System and method for communication between airborne and ground-based entities. US Patent 6,760,778, Google Patents (2004)

  68. Peloso, M.P., Gerhardt, I., Ho, C., Lamas-Linares, A., Kurtsiefer, C.: Daylight operation of a free space, entanglement-based quantum key distribution system. New J. Phys. 11(4), 045007 (2009)

    ADS  Google Scholar 

  69. Teich, M.C., Saleh, B.: Fundamentals of Photonics, vol. 3. Wiley, Hoboken (1991)

    Google Scholar 

  70. Alda, J.: Laser and gaussian beam propagation and transformation. Encycl. Opt. Eng. 2013, 999–1013 (2003)

    Google Scholar 

  71. Klein, B.J., Degnan, J.J.: Optical antenna gain. 1: Transmitting antennas. Appl. Opt. 13(9), 2134–2141 (1974)

    ADS  Google Scholar 

  72. Degnan, J.J., Klein, B.J.: Optical antenna gain. 2: Receiving antennas. Appl. Opt. 13(10), 2397–2401 (1974)

    ADS  Google Scholar 

  73. Bloom, S., Korevaar, E., Schuster, J., Willebrand, H.: Understanding the performance of free-space optics. J. Opt. Netw. 2(6), 178–200 (2003)

    Google Scholar 

  74. Arnon, S.: Effects of atmospheric turbulence and building sway on optical wireless-communication systems. Opt. Lett. 28(2), 129–131 (2003)

    ADS  Google Scholar 

  75. Gabay, M., Arnon, S.: Quantum key distribution by a free-space mimo system. J. Lightwave Technol. 24(8), 3114–3120 (2006)

    ADS  Google Scholar 

  76. Hosseinidehaj, N., Malaney, R., Ng, S.X., Hanzo, L.: Satellite-based continuous-variable quantum communications: state-of-the-art and a predictive outlook. ArXiv preprint arXiv:1712.09722 (2017)

  77. Gatenby, P.V., Grant, M.A.: Optical intersatellite links. Electron. Commun. Eng. J. 3(6), 280–288 (1991)

    Google Scholar 

  78. Elterman, L.: Parameters for attenuation in the atmospheric windows for fifteen wavelengths. Appl. Opt. 3(6), 745–749 (1964)

    ADS  Google Scholar 

  79. Fuchs, C.A., Gisin, N., Griffiths, R.B., Niu, C.-S., Peres, A.: Optimal eavesdropping in quantum cryptography. I. Information bound and optimal strategy. Phys. Rev. A 56(2), 1163 (1997)

    MathSciNet  ADS  Google Scholar 

  80. Bruß, D., Lütkenhaus, N.: Quantum key distribution: from principles to practicalities. Appl. Algebra Eng. Commun. Comput. 10(4), 383–399 (2000)

    MathSciNet  MATH  Google Scholar 

  81. Loudon, R.: The Quantum Theory of Light. Oxford University Press, Oxford (2000)

    MATH  Google Scholar 

  82. Sharma, V., Shukla, C., Banerjee, S., Pathak, A.: Controlled bidirectional remote state preparation in noisy environment: a generalized view. Quantum Inf. Process. 14(9), 3441–3464 (2015)

    MathSciNet  MATH  ADS  Google Scholar 

  83. Sharma, V., Thapliyal, K., Pathak, A., Banerjee, S.: A comparative study of protocols for secure quantum communication under noisy environment: single-qubit-based protocols versus entangled-state-based protocols. Quantum Inf. Process. 15(11), 4681–4710 (2016)

    MathSciNet  MATH  ADS  Google Scholar 

  84. Cover, T.M., Thomas, J.A.: Elements of Information Theory, 2nd edn. Wiley, Hoboken (2006)

    MATH  Google Scholar 

  85. Brassard, G., Crépeau, C.: Quantum cryptography. In: Encyclopedia of Cryptography and Security, pp. 495–500. Springer (2005)

  86. Scarani, V., Acin, A., Ribordy, G., Gisin, N.: Quantum cryptography protocols robust against photon number splitting attacks for weak laser pulse implementations. Phys. Rev. Lett. 92(5), 057901 (2004)

    ADS  Google Scholar 

  87. Chefles, A.: Unambiguous discrimination between linearly independent quantum states. Phys. Lett. A 239(6), 339–347 (1998)

    MathSciNet  MATH  ADS  Google Scholar 

  88. Acin, A., Gisin, N., Scarani, V.: Coherent-pulse implementations of quantum cryptography protocols resistant to photon-number-splitting attacks. Phys. Rev. A 69(1), 012309 (2004)

    ADS  Google Scholar 

  89. Tamaki, K., Lo, H.-K.: Unconditionally secure key distillation from multiphotons. Phys. Rev. A 73(1), 010302 (2006)

    ADS  Google Scholar 

  90. Hwang, W.-Y.: Quantum key distribution with high loss: toward global secure communication. Phys. Rev. Lett. 91(5), 057901 (2003)

    ADS  Google Scholar 

  91. Horikiri, T., Kobayashi, T.: Decoy state quantum key distribution with a photon number resolved heralded single photon source. Phys. Rev. A 73(3), 032331 (2006)

    ADS  Google Scholar 

  92. Meyer-Scott, E., Yan, Z., MacDonald, A., Bourgoin, J.-P., Hübel, H., Jennewein, T.: How to implement decoy-state quantum key distribution for a satellite uplink with 50-dB channel loss. Phys. Rev. A 84(6), 062326 (2011)

    ADS  Google Scholar 

  93. Gottesman, D., Lo, H.-K., Lutkenhaus, N., Preskill, J.: Security of quantum key distribution with imperfect devices. In: Information Theory, 2004. ISIT 2004. Proceedings. International Symposium on, p. 136. IEEE (2004)

  94. Fung, C.-H.F., Tamaki, K., Lo, H.-K.: Performance of two quantum-key-distribution protocols. Phys. Rev. A 73(1), 012337 (2006)

    ADS  Google Scholar 

  95. Er-long, M., Zheng-fu, H., Shun-sheng, G., Tao, Z., Da-Sheng, Diao, Guang-Can, Guo: Background noise of satellite-to-ground quantum key distribution. New J. Phys. 7(1), 215 (2005)

    ADS  Google Scholar 

  96. Aviv, D.G.: Laser Space Communications. Artech House Publishers, Norwood (2006)

    Google Scholar 

  97. Ma, X., Fung, C.-H.F., Lo, H.-K.: Quantum key distribution with entangled photon sources. Phys. Rev. A 76(1), 012307 (2007)

    ADS  Google Scholar 

  98. Jeong, Y.-C., Kim, Y.-S., Kim, Y.-H.: Effects of depolarizing quantum channels on BB84 and SARG04 quantum cryptography protocols. Laser Phys. 21(8), 1438–1442 (2011)

    ADS  Google Scholar 

  99. Ali, S., Wahiddin, M.R.B.: Fiber and free-space practical decoy state QKD for both BB84 and SARG04 protocols. Eur. Phys. J. D 60(2), 405–410 (2010)

    ADS  Google Scholar 

  100. Zadok, A., Scheuer, J., Sendowski, J., Yariv, A.: Secure key generation using an ultra-long fiber laser: transient analysis and experiment. Opt. Express 16(21), 16680–16690 (2008)

    ADS  Google Scholar 

  101. Pelton, J.N.: The Basics of Satellite Communications. Intl Engineering Consortium, Chicago (2006)

    Google Scholar 

  102. Manning, T.: Microwave radio transmission design guide. Artech House, Norwood (2009)

    Google Scholar 

  103. Rappaport, T.S., MacCartney, G.R., Samimi, M.K., Sun, S.: Wideband millimeter-wave propagation measurements and channel models for future wireless communication system design. IEEE Trans. Commun. 63(9), 3029–3056 (2015)

    Google Scholar 

  104. Rosen, HA: Satellite communications system employing frequency reuse. Google Patents, US Patent, 4,879,711, (1989)

  105. Gilhousen, K.S., Jacobs, I.M., Weaver. Jr., L.A.: Spread spectrum multiple access communication system using satellite or terrestrial repeaters, Google Patents, US Patent, 4,901,307, (1990)

  106. Wang, A.W.: Method and apparatus for providing wideband services using medium and low earth orbit satellites. Google Patents, US Patent, 7,627,284 (2009)

  107. Pearson, J.E.: Atmospheric turbulence compensation using coherent optical adaptive techniques. Appl. Opt. 15(3), 622–631 (1976)

    ADS  Google Scholar 

  108. Kedar, D., Arnon, S.: Urban optical wireless communication networks: the main challenges and possible solutions. IEEE Commun. Mag. 42(5), S2–S7 (2004)

    Google Scholar 

  109. Ricklin, J.C., Davidson, F.M.: Atmospheric turbulence effects on a partially coherent Gaussian beam: implications for free-space laser communication. JOSA A 19(9), 1794–1802 (2002)

    ADS  Google Scholar 

  110. Ellerbroek, B.L.: First-order performance evaluation of adaptive-optics systems for atmospheric-turbulence compensation in extended-field-of-view astronomical telescopes. JOSA A 11(2), 783–805 (1994)

    ADS  Google Scholar 

Download references

Acknowledgements

VS would like to thank the Ministry of Human Resource Development, Govt. of India, for offering a doctoral fellowship as a Ph.D. research scholar at Indian Institute of Technology Jodhpur, Rajasthan, India. VS thanks, Professor K. K. Sharma for useful discussions pertaining to the work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vishal Sharma.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sharma, V., Banerjee, S. Analysis of atmospheric effects on satellite-based quantum communication: a comparative study. Quantum Inf Process 18, 67 (2019). https://doi.org/10.1007/s11128-019-2182-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11128-019-2182-0

Keywords

Navigation