Skip to main content
Log in

A rational hierarchical (t,n)-threshold quantum secret sharing scheme

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

Quantum secret sharing plays a crucial role in quantum cryptography. In this paper, we present a rational hierarchical (t,n)-threshold quantum secret sharing scheme based on Lagrange interpolation. In our scheme, participants possess rational and hierarchical properties, and the secret can be reconstructed when the number of rational participants satisfies the hierarchical (t,n)-threshold structure proposed in this paper. The reconstructed secret can encompass both classical information and quantum state information, enhancing the practicality and flexibility of our scheme compared to existing ones. Additionally, we redefine the utility of participants based on their roles in the secret recovery process. This newly defined utility allows for a more precise analysis of the correctness, fairness, and equilibrium of our scheme. Finally, our scheme not only resists a typical set of external attacks but also incorporates mechanisms to detect forgery and collusion among participants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Data availability

All data generated or analyzed during this study are included in this published article.

References

  1. Shamir, A.: How to share a secret. Commun. ACM 22, 612–613 (1979)

    Article  MathSciNet  Google Scholar 

  2. Halpern, J., Teague, V.: Rational secret sharing and multiparty computation. In: Proceedings of the 36th Annual ACM Symposium on Theory of Computing. ACM, pp. 623-632 (2004)

  3. Abraham, I., Dolev, D., Gonen, R.: Distributed computing meets game theory. In: Proceedings of the 25th Annual ACM Symposium on Principles of Distributed Computing. ACM, pp. 53-62 (2006)

  4. Nojoumian, M., Stinson, D.R.: Brief announcement: secret sharing based on the social behaviors of players. In: Proceedings of the 29th Annual ACM Symposium on Principles of Distributed Computing. ACM, pp. 239-240 (2012)

  5. Harn, L., Lin, C., Yong, L.: Fair secret reconstruction in (t, n)-secret sharing. J. Inf. Sesur. Appl. 23, 1–7 (2015)

    Google Scholar 

  6. Shor, P.W.: Algorithms for quantum computation: discrete logarithms and factoring. In: Proceedings of 35th Annual Symposium on the Foundations of Computer Science. ACM, pp. 124-134 (1994)

  7. Grover, L.K.: A fast quantum mechanical algorithm for database search. In: Proceedings of the 28 Annual ACM Symposium Computing. ACM, pp. 212-219 (1996)

  8. Wootters, W.K., Zurek, W.H.: A single quantum cannot be cloned. Nature 299, 802–803 (1982)

    Article  ADS  CAS  Google Scholar 

  9. Lo, H.K., Chau, H.F.: Unconditional security of quantum key distribution over arbitrarily long distances. Science 283, 2050–2056 (1999)

    Article  ADS  CAS  PubMed  Google Scholar 

  10. Mayers, D.: Unconditional security in quantum cryptography. ACM 48, 351–406 (2001)

    MathSciNet  Google Scholar 

  11. Hillery, M., Buzek, V., Berthiaume, A.: Quantum secret sharing. Phys. Rev. A 59, 1829 (1999)

    Article  ADS  MathSciNet  CAS  Google Scholar 

  12. Cleve, R., Gottesman, D., Lo, H.K.: How to share a quantum secret. Phys. Rev. Lett. 83, 648–651 (1999)

    Article  ADS  CAS  Google Scholar 

  13. Li, Y., Zhang, K., Peng, K.: Multiparty secret sharing of quantum information based on entanglement swapping. Phys. Lett. A 324, 420–424 (2004)

    Article  ADS  MathSciNet  CAS  Google Scholar 

  14. Katz, J.: Theory of Cryptography, pp. 251–272. Springer-Verlag, Berlin (2008)

    Book  Google Scholar 

  15. Lau, H.K., Weedbrook, C.: Quantum secret sharing with continuous-variable cluster states. Phys. Rev. A 88, 042313 (2013)

    Article  ADS  Google Scholar 

  16. Rahaman, R., Parker, M.G.: Quantum scheme for secret sharing based on local distinguish ability. Phys. Rev. A 91, 022330 (2015)

    Article  ADS  Google Scholar 

  17. Fu, Y., Yin, H.L., Chen, T.Y., Chen, Z.B.: Long-distance measurement-device-independent multiparty quantum communication. Rhys. Rev. Lett. 114, 090501 (2015)

    Article  ADS  Google Scholar 

  18. Brian, P.W., Joseph, M.L., Nicholas, A.P., Bing, Q., Warren, P.G.: Quantum secret sharing with polarization-entangled photon pairs. Rhys. Rev. A 99, 062311 (2019)

    Google Scholar 

  19. Ju, X.X., Zhong, W., Sheng, Y.B., Zhou, L.: Measurement-device-independent quantum secret sharing with hyper-encoding. Chinese Phys. B 31, 100302 (2022)

    Article  ADS  Google Scholar 

  20. Li, C.L., Fu, Y., Liu, W.B., Xie, Y.M., Li, B.H.: Breaking rate-distance limitation of measurement-device-independent quantum secret sharing. Rhys. Rev. Res. 5, 033077 (2023)

    CAS  Google Scholar 

  21. Gu, J., Cao, X.Y., Yin, H.L., Chen, Z.B.: Differential phase shift quantum secret sharing using twin field. Opt. Express 29, 9165 (2021)

    Article  ADS  PubMed  Google Scholar 

  22. Shen, A., Cao, X.Y., Wang, Y., Fu, Y., Gu, Jie: Experimental quantum secret sharing based on phase encoding of coherent states. Sci. China-Phys. Mech. Astron. 66, 260311 (2023)

    Article  ADS  Google Scholar 

  23. Yin, H.L., Fu, Y., Li, C.L., Weng, C.X., Li, B.H.: Experimental quantum secure network with digital signatures and encryption. Natl. Sci. Rev. 10, nwac228 (2023)

    Article  ADS  PubMed  Google Scholar 

  24. Qin, H., Tang, W.K.S., Tso, R.: Rational quantum secret sharing. Sci. Rep. 8(1), 11115 (2018)

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  25. Dou, Z., Xu, G., Chen, X.B.: A secure rational quantum state sharing protocol. Sci. China. Inf. Sci. 61(2), 022501 (2018)

    Article  MathSciNet  Google Scholar 

  26. Maitra, A., Joyee, D.S., Paul, G.: Proposal for quantum rational secret sharing. Phys. Rev. A 92, 022305 (2015)

    Article  ADS  Google Scholar 

  27. Simmon, G.J.: How to (really) share a secret. In: Proceedings of Advances in Cryptology-CRYPTO’ 88. Springer, pp. 390-448 (1990)

  28. Basit, A., Kumar, N.C., Venkaiah, V.C.: Multi-stage multi-secret sharing scheme for hierarchical access structure. In: Proceedings of International Conference on Computing, Communication and Automation. IEEE, pp. 557-563 (2017)

  29. Zhang, J., Lin, C.L., Huang, K.K.: Polynomial interpolation based hierarchical secret sharing schemes. J. Cryptol. Res. 9(4), 743–754 (2022)

    Google Scholar 

  30. Shukla, C., Pathak, A.: Hierarchical quantum communication. Phys. Lett. A 377, 1337 (2013)

    Article  ADS  MathSciNet  CAS  Google Scholar 

  31. Xu, G., Wang, C., Yang, Y.X.: Hierarchical quantum information splitting of an arbitrary two-qubit state via the cluster state. Quantum Inf. Process. 13(1), 43–57 (2014)

    Article  ADS  Google Scholar 

  32. Venugopalan, A., Shukla: Protocol, an integrated hierarchical dynamic quantum secret sharing. Int. J. Theor. Phys. 54, 3143–3154 (2015)

    Article  Google Scholar 

  33. Xu, G., Shan, R.T., Chen, X.B.: Probabilistic and hierarchical quantum information splitting based on the non-maximally entangled cluster state. CMC-Comput. Mat. Contin. 69(1), 339–349 (2021)

    Google Scholar 

  34. Qin, H., Tang, W., Tso, R.L.: Hierarchical quantum secret sharing based on special high-dimensional entangled state. IEEE. J. Sel. Top. Quant. 26, 1–1 (2020)

    Article  Google Scholar 

  35. Zha, X.W., Miao, N., Wang, H.F.: Hierarchical quantum information splitting of an arbitrary two-qubit using a single quantum resource. Int. J. Theor. Phys. 58, 2428–2434 (2019)

    Article  MathSciNet  Google Scholar 

  36. Nielsen, M.A., Chuang, I.L.: Quantum computation and quantum information. Math. Struct. Comp. Sci. 17(6), 1115–1115 (2002)

    MathSciNet  Google Scholar 

  37. Stefanov, A., Gisin, N., Guinnard, O.: Optical quantum random number generator. J. Mod. Opt. 47, 595–598 (2000)

    ADS  Google Scholar 

  38. Qin, H., Zhu, X., Dai, Y.: (t, n) Threshold quantum secret sharing using the phase shift operation. Quantum Inf. Process. 14(8), 2997–3004 (2015)

    Article  ADS  MathSciNet  Google Scholar 

  39. Zhang, X.L.: One-way quantum identity authentication based on public key. Chinese. Sci. Bull. 54, 2018–2021 (2009)

    Article  Google Scholar 

  40. Makarov, V., Anisimov, A., Skaar, J.: Effects of detector efficiency mismatch on security of quantum cryptosystems. Phys. Rev. A 74, 022313 (2006)

    Article  ADS  Google Scholar 

  41. Qi, B., Fung, C.H.F., Lo, H.K.: Time-shift attack in practical quantum cryptosystems. Quantum Inf. Comput. 7, 73–824 (2007)

    MathSciNet  Google Scholar 

  42. Zhang, H.L., Che, B.C., Dou, Z.: A rational quantum state sharing protocol with semi-off-line dealer. Chinese Phys. B 31(5), 050309 (2022)

    Article  ADS  Google Scholar 

  43. Tsai, C.W., Hsieh, C.R., Hwang, T.: Dense coding using cluster states and its application on deterministic secure quantum communication. Eur. Phys. J. D 61, 779 (2011)

    Article  ADS  CAS  Google Scholar 

  44. Daryanoosh, S., Slussarenko, S., Berry, D.W.: Experimental optical phase measurement approaching the exact Heisenberg limit. Nat. Commun. 9, 4606 (2018)

    Article  ADS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This research was supported by the National Natural Science Foundation of China (No.U21A20428, No.61972126, No.12171134).

Author information

Authors and Affiliations

Authors

Contributions

FL, ZL and SZ have written this paper and have done the research which supports it. FL and ZL have collaborated in the conception, research and design of the paper. SZ and LL have collaborated in the language polishment and the typesetting. Above all authors have tried best to review the manuscript carefully.

Corresponding author

Correspondence to Fulin Li.

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interest regarding the publication of this manuscript.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This research was supported by the National Natural Science Foundation of China (Nos. U21A20428, 61972126, 12171134).

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, F., Liu, Z., Liu, L. et al. A rational hierarchical (t,n)-threshold quantum secret sharing scheme. Quantum Inf Process 23, 60 (2024). https://doi.org/10.1007/s11128-024-04269-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11128-024-04269-1

Keywords

Navigation