Skip to main content
Log in

A quantum secret sharing scheme with verifiable function

  • Regular Article
  • Published:
The European Physical Journal D Aims and scope Submit manuscript

Abstract

In the (t, n) threshold quantum secret sharing scheme, it is difficult to ensure that internal participants are honest. In this paper, a verifiable (t, n) threshold quantum secret sharing scheme is designed to combine with classical secret sharing scheme. First of all, the distributor uses the asymmetric binary polynomial to generate the shares and sends them to each participant. Secondly, the distributor sends the initial quantum state with the secret to the first participant, and each participant performs unitary operation that uses the mutually unbiased bases on the obtained d dimension single bit quantum state (d is a large odd prime number). In this process, distributor can randomly check the participants, and find out the internal fraudsters. Then the secret is reconstructed after all other participants publicly transmit it at the same time. The analysis of this scheme includes correctness analysis, completeness analysis and security analysis. And the security analysis shows that the scheme can resist both external and internal attacks.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. Shamir, Commun. ACM 22, 612 (1979).

    Article  Google Scholar 

  2. G.R. Blakley, in Proceedings of the National Computer Conference (1979), pp. 313–317.

  3. W.A. Jackson, K.M. Martin, C.M. Okeefe, J. Crypt. 9, 233 (1996).

    Article  Google Scholar 

  4. C.F. Hsu, Q. Cheng, X. Tang, B. Zeng, Inf. Sci. 181, 1403 (2011).

    Article  Google Scholar 

  5. R. Bitar, E.R. Salim, I.E.E.E. Trans, Inf. Theor. 64, 933 (2018).

    Article  Google Scholar 

  6. Y. Ouyang, S.-H. Tan, L. Zhao, J.F. Fitzsimons, Phys. Rev. A. 96, 052333 (2017).

    Article  ADS  Google Scholar 

  7. R. Bassirian, S. Boreiri, V. Karimipour, Quantum Inf. Process. 18, 109 (2019).

    Article  ADS  Google Scholar 

  8. B. Chor, S. Goldwasser, S. Micali, B. Awerbuch, in Proceedings of 26th IEEE Symposium on Foundations of Computer Science (1985), pp. 383–395.

  9. P Feldman, in Proceedings of 28th IEEE Symposium on Foundations of Computer Science (1987), pp. 427–437.

  10. M. Stadler, EUROCRYPT96 1070, 190 (1996) .

    Google Scholar 

  11. P.W. Shor, in Proceedings of the 35th Annual Symposium of Foundation of Computer Science (1994).

  12. M. Hillery, V. Buzek, A. Berthiaume, Phys. Rev. A. 59, 1829 (1999).

    Article  ADS  MathSciNet  Google Scholar 

  13. F.G. Deng, X.H. Li, H.Y. Zhou, Z.J. Zhang, Phys. Rev. A. 72, 044302 (2005).

    Article  ADS  Google Scholar 

  14. Y. Sun, Q.Y. Wen, F.C. Zhu, Commun. Theor. Phys. 54, 89 (2010).

    Article  ADS  Google Scholar 

  15. M.H. Dehkordi, E. Fattahi, Quantum Inf. Process. 12, 1299 (2013).

    Article  ADS  Google Scholar 

  16. R. Cleve, D. Gottesman, H.K. Lo, Phys. Rev. Lett. 83, 648 (1999).

    Article  ADS  Google Scholar 

  17. C.M. Bai, Z.H. Li, C.J. Liu, Y.M. Li, Eur. Phys. J. D. 71, 1 (2017).

    Article  ADS  Google Scholar 

  18. C.M. Bai, Z.H. Li, C.J. Liu, Y.M. Li, Eur. Phys. J. D. 72, 1 (2018).

    Article  Google Scholar 

  19. P. Khakbiz, M. Asoudeh, Quantum Inf. Process. 18, 1 (2019).

    Article  ADS  Google Scholar 

  20. A. Tavakoli, I. Herbauts, M. Zukowski, M. Bourennane, Phys. Rev. A. 92, 1 (2015).

    Google Scholar 

  21. V. Karimipour, M. Asoudeh, Phys. Rev. A. 92, 030301 (2015).

    Article  ADS  Google Scholar 

  22. C.M. Bai, Z.H. Li, Y.M. Li, Commun. Theor. Phys. 69, 513 (2018).

    Article  ADS  Google Scholar 

  23. P.K. Sarvepalli, A. Klappenecker, Phys. Rev. A. 80, 022321 (2009).

    Article  ADS  MathSciNet  Google Scholar 

  24. C.M. Bai, Z.H. Li, C.J. Liu, Y.M. Li, Quantum Inf. Process. 16, 304 (2017).

    Article  ADS  Google Scholar 

  25. K. Senthoor, P.K. Sarvepalli, Phys. Rev. A. 100, 052313 (2019).

    Article  ADS  Google Scholar 

  26. Y.G. Yang, Y.W. Teng, H.P. Chai, Q.Y. Wen, Quantum Inf. Process. 50, 792 (2011).

    Google Scholar 

  27. X. Song, Y. Liu, Quantum Inf. Process. 15, 851 (2016).

    Article  ADS  MathSciNet  Google Scholar 

  28. H. Qin, Y. Dai, Inf. Process. Lett. 116, 351 (2016).

    Article  Google Scholar 

  29. N. Hadisukmana, R. Roestam, 2019 ICSECC (2019).

  30. C. Schmid, P. Trojek, M. Bourennane, C. Kurtsiefer, M. Zukowski, H. Weinfurter, Phys. Rev. Lett. 95, 230505 (2005).

    Article  ADS  Google Scholar 

  31. C. Lu, F. Miao, J. Hou, K. Meng, Quantum Inf. Process. 17, 310 (2018).

    Article  ADS  Google Scholar 

  32. I.D. Ivonovic, J. Phys. A: Math. Gen. 14, 3241 (1981).

    Article  ADS  Google Scholar 

  33. W.K. Wotters, B.D. Fields, Ann. Phys. 191, 363 (1989).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

Li-Juan Liu and Zhi-Hui Li proposed the initial idea for this paper. Li-Juan Liu wrote the initial draft of the manuscript, and all authors participated in the discussion and revision of the manuscript.

Corresponding author

Correspondence to Zhi-Hui Li.

Additional information

Publisher's Note

The EPJ Publishers remain neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, LJ., Li, ZH., Han, ZW. et al. A quantum secret sharing scheme with verifiable function. Eur. Phys. J. D 74, 154 (2020). https://doi.org/10.1140/epjd/e2020-10010-3

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1140/epjd/e2020-10010-3

Keywords

Navigation