Skip to main content
Log in

Withstanding detector attacks in continuous-variable quantum key distribution via mean-restricted unary linear regression

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

The distinguishing of coherent states with minimum error is one of the fundamental tasks in continuous-variable quantum key distribution (CV-QKD). Homodyne detector, which is also a common element in current telecommunication, is considered as the simplest setup for such tasks due to it relying only on Gaussian operations. However, a practical homodyne detector has a finite linearity domain, thus eavesdroppers can open secure loopholes by displacing its operation into the nonlinearity domain, e.g., saturation attack and homodyne-detector-blinding attack. Here, we propose a counteracting strategy using mean-restricted unary linear regression to defend against such attacks caused by finite linearity domain problem. This strategy, which relies only on local operations plus classical communication (LOCC) processing, can estimate the displacements from the eavesdropper and then recover the attacked data. To show its practical utility in CV-QKD, we discuss two potential applications under composable security: (1) against saturation attack with one average to limit the line fitted, (2) against homodyne-detector-blinding attack with various averages to limit the line fitted. Numerical analysis shows that the estimated displacements have acceptable accuracy compared with the real displacements caused by the eavesdropper.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

All data generated or analyzed during this study are included in this article.

References

  1. Xu, F., Ma, X., Zhang, Q., Lo, H.-K., Pan, J.-W.: Secure quantum key distribution with realistic devices. Rev. Mod. Phys. 92(2), 025002 (2020)

    Article  ADS  MathSciNet  CAS  Google Scholar 

  2. Lucamarini, M., Yuan, Z.L., Dynes, J.F., Shields, A.J.: Overcoming the rate-distance limit of quantum key distribution without quantum repeaters. Nature 557(7705), 400–403 (2018)

    Article  ADS  CAS  PubMed  Google Scholar 

  3. Zhang, W., Leent, T., Redeker, K., Garthoff, R., Schwonnek, R., Fertig, F., Eppelt, S., Rosenfeld, W., Scarani, V., Lim, C.C.-W., et al.: A device-independent quantum key distribution system for distant users. Nature 607(7920), 687–691 (2022)

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  4. Weedbrook, C., Pirandola, S., García-Patrón, R., Cerf, N.J., Ralph, T.C., Shapiro, J.H., Lloyd, S.: Gaussian quantum information. Rev. Mod. Phys. 84(2), 621 (2012)

    Article  ADS  Google Scholar 

  5. Braunstein, S.L., Van Loock, P.: Quantum information with continuous variables. Rev. Mod. Phys. 77(2), 513 (2005)

    Article  ADS  MathSciNet  Google Scholar 

  6. Grosshans, F., Van Assche, G., Wenger, J., Brouri, R., Cerf, N.J., Grangier, P.: Quantum key distribution using gaussian-modulated coherent states. Nature 421(6920), 238–241 (2003)

    Article  ADS  CAS  PubMed  Google Scholar 

  7. Laudenbach, F., Pacher, C., Fung, C.-H.F., Poppe, A., Peev, M., Schrenk, B., Hentschel, M., Walther, P., Hübel, H.: Continuous-variable quantum key distribution with gaussian modulation—The theory of practical implementations. Adv. Quantum Technol. 1(1), 1800011 (2018)

    Article  Google Scholar 

  8. Pirandola, S., Andersen, U.L., Banchi, L., Berta, M., Bunandar, D., Colbeck, R., Englund, D., Gehring, T., Lupo, C., Ottaviani, C., et al.: Advances in quantum cryptography. Adv. Opt. Photon. 12(4), 1012–1236 (2020)

    Article  Google Scholar 

  9. Jouguet, P., Kunz-Jacques, S., Leverrier, A., Grangier, P., Diamanti, E.: Experimental demonstration of long-distance continuous-variable quantum key distribution. Nat. Photon. 7(5), 378–381 (2013)

    Article  ADS  CAS  Google Scholar 

  10. Ma, X.-C., Sun, S.-H., Jiang, M.-S., Liang, L.-M.: Wavelength attack on practical continuous-variable quantum-key-distribution system with a heterodyne protocol. Phys. Rev. A 87(5), 052309 (2013)

    Article  ADS  Google Scholar 

  11. Tan, X., Guo, Y., Zhang, L., Huang, J., Shi, J., Huang, D.: Wavelength attack on atmospheric continuous-variable quantum key distribution. Phys. Rev. A 103(1), 012417 (2021)

    Article  ADS  CAS  Google Scholar 

  12. Ma, X.-C., Sun, S.-H., Jiang, M.-S., Liang, L.-M.: Local oscillator fluctuation opens a loophole for eve in practical continuous-variable quantum-key-distribution systems. Phys. Rev. A 88(2), 022339 (2013)

    Article  ADS  Google Scholar 

  13. Jouguet, P., Kunz-Jacques, S., Diamanti, E.: Preventing calibration attacks on the local oscillator in continuous-variable quantum key distribution. Phys. Rev. A 87, 062313 (2013)

    Article  ADS  Google Scholar 

  14. Qi, B., Lougovski, P., Pooser, R., Grice, W., Bobrek, M.: Generating the local oscillator “locally’’ in continuous-variable quantum key distribution based on coherent detection. Phys. Rev. X 5, 041009 (2015)

    Google Scholar 

  15. Soh, D.B., Brif, C., Coles, P.J., Lütkenhaus, N., Camacho, R.M., Urayama, J., Sarovar, M.: Self-referenced continuous-variable quantum key distribution protocol. Phys. Rev. X 5(4), 041010 (2015)

    Google Scholar 

  16. Wang, T., Zuo, Z., Li, L., Huang, P., Guo, Y., Zeng, G.: Continuous-variable quantum key distribution without synchronized clocks. Phys. Rev. Appl. 18(1), 014064 (2022)

    Article  ADS  CAS  Google Scholar 

  17. Qin, H., Kumar, R., Alléaume, R.: Quantum hacking: saturation attack on practical continuous-variable quantum key distribution. Phys. Rev. A 94(1), 012325 (2016)

    Article  ADS  Google Scholar 

  18. Qin, H., Kumar, R., Makarov, V., Alléaume, R.: Homodyne-detector-blinding attack in continuous-variable quantum key distribution. Phys. Rev. A 98, 012312 (2018). https://doi.org/10.1103/PhysRevA.98.012312

    Article  CAS  Google Scholar 

  19. Wang, T., Huang, P., Zhou, Y., Liu, W., Ma, H., Wang, S., Zeng, G.: High key rate continuous-variable quantum key distribution with a real local oscillator. Opt. Express 26(3), 2794–2806 (2018)

    Article  ADS  PubMed  Google Scholar 

  20. Huo, M., Qin, J., Cheng, J., Yan, Z., Qin, Z., Su, X., Jia, X., Xie, C., Peng, K.: Deterministic quantum teleportation through fiber channels. Sci. Adv. 4(10), 9401 (2018)

    Article  ADS  Google Scholar 

  21. Zuo, Z., Wang, Y., Liao, Q., Guo, Y.: Overcoming the uplink limit of satellite-based quantum communication with deterministic quantum teleportation. Phys. Rev. A 104(2), 022615 (2021)

    Article  ADS  MathSciNet  CAS  Google Scholar 

  22. Zhao, H., Li, H., Xu, Y., Huang, P., Wang, T., Zeng, G.: Simple continuous-variable quantum key distribution scheme using a SAGNAC-based Gaussian modulator. Opt. Lett. 47(12), 2939–2942 (2022)

    Article  ADS  PubMed  Google Scholar 

  23. Lodewyck, J., Debuisschert, T., García-Patrón, R., Tualle-Brouri, R., Cerf, N.J., Grangier, P.: Experimental implementation of non-gaussian attacks on a continuous-variable quantum-key-distribution system. Phys. Rev. Lett. 98, 030503 (2007). https://doi.org/10.1103/PhysRevLett.98.030503

    Article  ADS  CAS  PubMed  Google Scholar 

  24. Jouguet, P., Kunz-Jacques, S., Leverrier, A.: Long-distance continuous-variable quantum key distribution with a Gaussian modulation. Phys. Rev. A 84, 062317 (2011). https://doi.org/10.1103/PhysRevA.84.062317

    Article  ADS  CAS  Google Scholar 

  25. Shao, Y., Wang, H., Pi, Y., Huang, W., Li, Y., Liu, J., Yang, J., Zhang, Y., Xu, B.: Phase noise model for continuous-variable quantum key distribution using a local local oscillator. Phys. Rev. A 104(3), 032608 (2021)

    Article  ADS  CAS  Google Scholar 

  26. Wang, T., Huang, P., Zhou, Y., Liu, W., Zeng, G.: Pilot-multiplexed continuous-variable quantum key distribution with a real local oscillator. Phys. Rev. A 97, 012310 (2018)

    Article  ADS  CAS  Google Scholar 

  27. Pirandola, S.: Composable security for continuous variable quantum key distribution: trust levels and practical key rates in wired and wireless networks. Phys. Rev. Res. 3, 043014 (2021). https://doi.org/10.1103/PhysRevResearch.3.043014

    Article  CAS  Google Scholar 

  28. Pirandola, S.: Limits and security of free-space quantum communications. Phys. Rev. Res. 3, 013279 (2021). https://doi.org/10.1103/PhysRevResearch.3.013279

    Article  CAS  Google Scholar 

  29. Zuo, Z., Wang, Y., Huang, D., Guo, Y.: Atmospheric effects on satellite-mediated continuous-variable quantum key distribution. J. Phys. A Math. Theor. 53(46), 465302 (2020)

    Article  ADS  MathSciNet  Google Scholar 

  30. Zuo, Z., Wang, Y., Mao, Y., Ruan, X., Guo, Y.: Security of quantum communications in oceanic turbulence. Phys. Rev. A 104(5), 052613 (2021)

    Article  ADS  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Grant Nos. 61871407, 61801522)

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhiyue Zuo.

Ethics declarations

Conflict of interest statement

The authors declare that there are not any possible conflict of interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jiang, W., Li, J., Jin, D. et al. Withstanding detector attacks in continuous-variable quantum key distribution via mean-restricted unary linear regression. Quantum Inf Process 23, 59 (2024). https://doi.org/10.1007/s11128-024-04266-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11128-024-04266-4

Keywords

Navigation