Skip to main content
Log in

CV MDI-QKD with noisy coherent states

  • Published:
Optical and Quantum Electronics Aims and scope Submit manuscript

Abstract

Continuous variable measurement-device-independent quantum key distribution (CV MDI-QKD) where legitimate communication parties, Alice and Bob, do not connect to each other directly but to an untrusted relay where the detection is performed can defend attacks that aim at measurement devices. It was recently shown that the preparation noise, although being trusted, was breaking the security of CV QKD. Hence, we study the security of continuous variable measurement-device-independent quantum key distribution based on noisy modulation of coherent states and investigate how the preparation noise influences the maximum transmission distance of the system. We propose a scheme of using a variable attenuator to attenuate decoder’s (Bob’s) mode to purify the coherent states he sends out under two-mode coherent attack. The simulation results show that when taking preparation noise into consideration the maximum transmission distance decreases seriously and our scheme can effectively compensate the detrimental effect of the preparation noise and improve the maximum transmission distance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Barnett, S.M., Phoenix, S.J.: Information-theoretic limits to quantum cryptography. Phys. Rev. A 48, R5–R8 (1993)

    Article  ADS  Google Scholar 

  • Filip, R.: Continuous-variable quantum key distribution with noisy coherent states. Phys. Rev. A 77, 022310–022314 (2008)

    Article  ADS  Google Scholar 

  • Grosshans, F., Assche, G.V., Wenger, J., Brouri-Tualle, R., Cerf, N.J., Grangier, P.: Quantum key distribution using gaussian-modulated coherent states. Nature 421, 238–241 (2003)

    Article  ADS  MATH  Google Scholar 

  • Häseler, H.H., Moroder, T., Lütkenhaus, N.: Testing quantum devices: practical entanglement verification in bipartite optical systems. Phys. Rev. A 77, 032303–032314 (2008)

    Article  ADS  Google Scholar 

  • Huang, J.Z., Weedbrook, C., Yin, Z.Q., Wang, S., Li, H.W., Guo, G., Han, Z.F.: Quantum hacking of a continuous-variable quantum-key-distribution system using a wavelength attack. Phys. Rev. A 87, 062329–062337 (2013)

    Article  ADS  Google Scholar 

  • Jouguet, P., Kunz-Jacques, S., Leverrier, A., Grangier, P., Diamanti, E.: Experimental demonstration of long-distance continuous-variable quantum key distribution. Nat. Photonics 7, 378–381 (2013a)

    Article  ADS  Google Scholar 

  • Jouguet, P., Kunz-Jacques, S., Diamanti, E.: Preventing calibration attacks on the local oscillator in continuous-variable quantum key distribution. Phys. Rev. A 87, 062313–062319 (2013b)

    Article  ADS  Google Scholar 

  • Leverrier, A., Grangier, P.: Continuous-variable quantum-key-distribution with a non-Gaussian modulation. Phys. Rev. A 83, 042312–042328 (2011)

    Article  ADS  Google Scholar 

  • Li, Z., Zhang, Y.C., Xu, F., Peng, X., Guo, H.: Continuous-variable measurement-device-independent quantum key distribution. Phys. Rev. A 89, 052301–052309 (2014)

    Article  ADS  Google Scholar 

  • Lodewyck, J., Bloch, M., Garcia-Patron, R., Fossier, S., Karpov, E., Diamanti, E., Debuisschert, T., Cerf, N.J., Brouri-Tualle, R., McLaughlin, S.W., Grangier, P.: Quantum key distribution over 25 km with an all-fiber continuous-variable systems. Phys. Rev. A 76, 042305–042315 (2007)

    Article  ADS  Google Scholar 

  • Ma, X.C., Sun, S.H., Jiang, M.S., Liang, L.M.: Local oscillator fluctuation opens a loophole for Eve in practical continuous-variable quantum key-distribution systems. Phys. Rev. A 88, 022339–022346 (2013a)

    Article  ADS  Google Scholar 

  • Ma, X.C., Sun, S.H., Jiang, M.S., Liang, L.M.: Wavelength attack on practical continuous-variable quantum-key-distribution system with a heterodyne protocol. Phys. Rev. A 87, 052309–052314 (2013b)

    Article  ADS  Google Scholar 

  • Ma, X.C., Sun, S.H., Jiang, M.S., Gui, M., Liang, L.M.: Gaussian-modulated coherent-state measurement-device-independent quantum key distribution. Phys. Rev. A 89, 4089–4091 (2013c)

    Google Scholar 

  • Ottaviani, C., Spedalieri, G., Braunstein, S.L., Pirandola, S.: Continuous-variable quantum cryptography with an untrusted relay: detailed security analysis of the symmetric configuration. Nat. Photonics 9, 397–402 (2015)

    Article  ADS  MathSciNet  Google Scholar 

  • Pirandola, S.: Entanglement reactivation in separable environments. New J. Phys. 15, 1633–1691 (2013)

    Article  Google Scholar 

  • Pirandola, S., Serafini, A., Lloyd, S.: Correlation matrices of two-mode bosonic systems. Phys. Rev. A 79, 1744–1747 (2009)

    Article  Google Scholar 

  • Pirandola, S., Ottaviani, C., Spedalieri, G., Weedbrook, C., Braunstein, S. L., Lloyd, S., Gehring, T., Jacobsen, C. S., Andersen, U. L.: preprint arXiv:1312.4104 (2013)

  • Qin, H., Kumar, R., Alléaume, R.: Saturation attack on continuous-variable quantum key distribution system. SPIE Security + Defense International Society for Optics and Photonics 8899, 717–718 (2013)

  • Ralph, T.C.: Continuous variable quantum cryptography. Phys. Rev. A 61, 010303–010310 (1999)

    Article  MathSciNet  Google Scholar 

  • Serafini, A.: Multimode uncertainty relations and separability of continuous variable states. Phys. Rev. Lett. 96, 110402–110405 (2006)

    Article  ADS  Google Scholar 

  • Shen, Y., Peng, X., Yang, J., Guo, H.: Continuous-variable quantum key distribution with Gaussian source noise. Phys. Rev. A 83(86), 10017–10028 (2011)

    Google Scholar 

  • Spedalieri, G., Ottaviani, C., Pirandola, S.: Covariance matrices under Bell-like detections. Open Syst. Inf. Dyn. 20, 112–121 (2012)

    MathSciNet  MATH  Google Scholar 

  • Usenko, V.C., Filip, R.: Feasibility of continuous-variable quantum key distribution with noisy coherent states. Phys. Rev. A 81, 022318–022327 (2010)

    Article  ADS  Google Scholar 

  • Wang, T., Yu, S., Zhang, Y.C., Gu, W., Guo, H.: Improving the maximum transmission distance of continuous-variable quantum key distribution with noisy coherent states using a noiseless amplifier. Phys. Rev. A 1633, 113–115 (2014)

    MATH  Google Scholar 

  • Weedbrook, C., Pirandola, S., Garcia-Patron, R., Cerf, N.J., Ralph, T.C., Shapiro, J.H., Lloyd, S.: Gaussian quantum information. Rev. Mod. Phys. 84, 621–669 (2012)

    Article  ADS  Google Scholar 

  • Wilde, M.M.: From classical to quantum Shannon theory. arXiv:1106.1445 (2011)

  • Wootters, W.K., Zurek, W.H.: A single quantum cannot be cloned. Nature 299, 802–803 (1982)

    Article  ADS  Google Scholar 

  • Zhang, Y.C., Li, Z., Yu, S., Gu, W., Peng, X., Guo, H.: Continuous-variable measurement-device-independent quantum key distribution using squeezed states. Phys. Rev. A 90, 052325–052331 (2014)

    Article  ADS  Google Scholar 

Download references

Acknowledgments

This work is supported by the National Natural Science Foundation of China (Grant No. 61177072). We thank Xuejin Wang for the useful help.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chunhui Huang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huang, C., Wang, X. CV MDI-QKD with noisy coherent states. Opt Quant Electron 48, 430 (2016). https://doi.org/10.1007/s11082-016-0697-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11082-016-0697-5

Keywords

Navigation