Skip to main content
Log in

Secure quantum signature scheme without entangled state

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

The security of most quantum signatures cannot be proved with security model under chosen-message attack. No formal proof can prove that their security is fully dependent on the basic quantum theory. Based on the orthogonal quantum state and key-controlled quantum hash function, an arbitrated quantum signature is proposed. In this scheme, the signatory produces the quantum signature by quantum-encrypting the output of key-controlled quantum hash function. The signature verification is performed by decrypting the signed message and comparing the decrypted message with the output of the key-controlled quantum hash function. The security of the proposed scheme depends on the indistinguishability of the unknown quantum sequence. Its unforgeability can be formally proved with security model under chosen-message attack. Therefore, its security can be supported by the formal proof. On the other hand, in the proposed scheme, no entangled state is used. It also has better qubit efficiency as well.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Data availability

The manuscript has no associated data.

References

  1. Diffie, W., Hellman, M.: New direction in cryptography. IEEE Trans. Inf. Theory 22(6), 644–654 (1976)

    Article  MathSciNet  Google Scholar 

  2. Chaum, D., Heyst, E.: Group signatures. In: Advance in Cryptology- EUROCRYPT’91, pp. 257–265. Springer, Berlin (1991)

  3. Mambo, M., Usuda, K., Okamoto, E.: Proxy signature: delegation of the power to sign messages. IEICE Trans. Fundam. E79-A(5), 1338–1354 (1996)

    Google Scholar 

  4. Rastegari, P., Susilo, W., Dakhilalian, M.: Certificateless designated verifier signature revisited: achieving a concrete scheme in the standard model. Int. J. Inf. Secur. 18(5), 619–665 (2019)

    Article  Google Scholar 

  5. Rastegari, P., Berenjkoub, M., Dakhilalian, M., et al.: 2019 Universal designated verifier signature scheme with non-delegatability in the standard model. Inform. Sci. 479, 321–334 (2019)

    Article  MathSciNet  Google Scholar 

  6. Chaum, D.: Blind signatures for untraceable payments. In: Advance in Cryptology-CRYPTO’82, pp. 199–203. Plenum, New York (1983)

  7. Shor, P.W.: Polynomial-time algorithms for prime factorization and discrete logarithms on a quantum computer. SIAM J. Comput. 26(5), 1484–1509 (1997)

    Article  MathSciNet  Google Scholar 

  8. Wang, B., Hu, F., Yao, H., et al.: Prime factorization algorithm based on parameter optimization of ising model. Sci. Rep. 10(1), 1–10 (2020)

    CAS  Google Scholar 

  9. Huang, Y., Su, Z., Zhang, F., et al.: Quantum algorithm for solving hyper elliptic curve discrete logarithm problem. Quantum Inf. Process. 19(62), 1–17 (2020)

    ADS  Google Scholar 

  10. Gottesman, D., Chuang, I.: Quantum digital signatures. arXiv: quant-ph/0105032 (2001)

  11. Zeng, G.H., Keitel, C.H.: Arbitrated quantum-signature scheme. Phys. Rev. A 65(4), 042312 (2002)

    Article  ADS  Google Scholar 

  12. Liang, X.Q., Wu, Y.L., Zhang, Y.H., et al.: Quantum multi-proxy blind signature scheme based on four-qubit cluster states. Int. J. Theor. Phys. 58(1), 31–39 (2019)

    Article  Google Scholar 

  13. Qin, H., Tang, W.K.S., Tso, R.: Efficient quantum multi-proxy signature. Quantum Inf. Process. 18(2), 53 (2019)

    Article  ADS  MathSciNet  Google Scholar 

  14. Zheng, T., Chang, Y., Yan, L.L., et al.: Semi-quantum proxy signature scheme with quantum walk-based teleportation. Int. J. Theor. Phys. 59(10), 3145–3155 (2020)

    Article  ADS  MathSciNet  Google Scholar 

  15. Xia, C., Li, H., Hu, J.: A semi-quantum blind signature protocol based on five-particle GHZ state. Eur. Phys. J. Plus 136(6), 633 (2021)

    Article  Google Scholar 

  16. Chen, B., Yan, L.: Quantum and semi-quantum blind signature schemes based on entanglement swapping. Int. J. Theor. Phys. 60(10), 4006–4014 (2021)

    Article  ADS  MathSciNet  Google Scholar 

  17. Zhang, Y., Xin, X., Li, F.: Secure and efficient quantum designated verifier signature scheme. Mod. Phys. Lett. A 35(18), 2050148 (2020)

    Article  ADS  MathSciNet  Google Scholar 

  18. Xin, X., Wang, Z., Yang, Q.: Quantum designated verifier signature based on Bell states. Quantum Inf. Process. 19(3), 79 (2020)

    Article  ADS  MathSciNet  Google Scholar 

  19. Jiang, D.H., Hu, Q.Z., Liang, X.Q., et al.: A novel quantum multi-signature protocol based on locally indistinguishable orthogonal product states. Quantum Inf. Process. 18(9), 268 (2019)

    Article  ADS  MathSciNet  Google Scholar 

  20. Jiang, D.H., Xu, Y.L., Xu, G.B.: Arbitrary quantum signature based on local indistinguishability of orthogonal product states. Int. J. Theor. Phys. 58(3), 1036–1045 (2019)

    Article  MathSciNet  Google Scholar 

  21. Xin, X., He, Q., Wang, Z., et al.: Security analysis and improvement of an arbitrated quantum signature scheme. Optik 189, 23–31 (2019)

    Article  ADS  Google Scholar 

  22. He, Q., Xin, X., Yang, Q.: Security analysis and improvement of a quantum multi-signature protocol. Quantum Inf. Process. 20(1), 26 (2021)

    Article  ADS  MathSciNet  Google Scholar 

  23. Liu, G., Ma, W.P., Cao, H., et al.: A novel quantum group proxy blind signature scheme based on five-qubit entangled state. Int. J. Theor. Phys. 58(6), 1999–2008 (2019)

    Article  MathSciNet  Google Scholar 

  24. Zhou, B.M., Lin, L.D., Wang, W., et al.: Security analysis of particular quantum proxy blind signature against the forgery attack. Int. J. Theor. Phys. 59(2), 465–473 (2020)

    Article  MathSciNet  Google Scholar 

  25. Ding, L., Xin, X., Yang, Q., et al.: Security analysis and improvements of XOR arbitrated quantum signature-based GHZ state. Mod. Phys. Lett. A 37(2), 2250008 (2022)

    Article  ADS  MathSciNet  Google Scholar 

  26. Zheng, X.Y., Kuang, C.: Arbitration quantum signature protocol based on XOR encryption. Int. J. Quantum Inf. 18(5), 2050025 (2020)

    Article  MathSciNet  Google Scholar 

  27. Gao, F., Qin, S.J., Guo, F.Z., et al.: Cryptanalysis of the arbitrated quantum signature protocol. Phys. Rev. A 84(2), 022344 (2011)

    Article  ADS  Google Scholar 

  28. Yang, C.W., Liu, J., Tsai, C.W., et al.: Cryptanalysis of a semi-quantum bi-signature scheme based on w states. Entroy 24(10), 1048 (2022)

    ADS  MathSciNet  Google Scholar 

  29. Bennett C.H., Brassard G.: Quantum cryptography: public key distribution and coin tossing. In: Proceedings of IEEE International Conference on Computers, Systems and Signal Processing, pp. 175–179. IEEE, New York (1984)

  30. Shor, P.W., Preskill, J.: Simple proof of security of the BB84 quantum key distribution protocol. Phys. Rev. Lett. 85(2), 441–444 (2000)

    Article  ADS  CAS  PubMed  Google Scholar 

  31. Xin, X., Ding, L., Zhang, T., et al.: Provably secure arbitrated-quantum signature. Quantum Inf. Process. 21(12), 390 (2022)

    Article  ADS  MathSciNet  Google Scholar 

  32. Goldreich, O.: Foudations of Cryptography: Basic Applications. Publishing House of Electronics Industry, Beijing (2004)

    Google Scholar 

  33. Yang, L., Xiang, C., Li, B.: Quantum probabilistic encryption scheme based on conjugate coding. China Commun. 10(2), 19–26 (2013)

    Article  Google Scholar 

  34. Hwang, T., Lee, K.C.: EPR quantum key distribution protocols with 100% qubit efficiency. IET Inf. Secur. 1(1), 43–45 (2007)

    Article  Google Scholar 

  35. Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information, pp. 531–536. Cambridge University Press, Cambridge (2000)

    Google Scholar 

Download references

Acknowledgements

This work is supported by the National Natural Science Foundation of China (Grant No.62272090) and the Key Scientific Research Project of Colleges and Universities in Henan Province (Grant No.22A413010). In addition, we are grateful to the anonymous reviewers who have helped to improve the paper.

Author information

Authors and Affiliations

Authors

Contributions

The scheme and security model were proposed by XX, TZ and LS. The security of the scheme was analyzed by HL and XX. The efficiency analysis was presented by CL and FL. The draft of the manuscript was written by XX and TZ. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Xiangjun Xin.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, T., Xin, X., Sun, L. et al. Secure quantum signature scheme without entangled state. Quantum Inf Process 23, 49 (2024). https://doi.org/10.1007/s11128-024-04257-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11128-024-04257-5

Keywords

Navigation