Skip to main content
Log in

Average Rényi entropy of a subsystem in random pure state

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

In this paper, we examine the average Rényi entropy \(S_{\alpha }\) of a subsystem A when the whole composite system AB is a random pure state. We assume that the Hilbert space dimensions of A and AB are m and mn, respectively. First, we compute the average Rényi entropy analytically for \(m = \alpha = 2\). We compare this analytical result with the approximate average Rényi entropy, which is shown to be very close. For general case, we compute the average of the approximate Rényi entropy \({\widetilde{S}}_{\alpha } (m,n)\) analytically. When \(1 \ll n\), \({\widetilde{S}}_{\alpha } (m,n)\) reduces to \(\ln m - \frac{\alpha }{2 n} (m - m^{-1})\), which is in agreement with the asymptotic expression of the average von Neumann entropy. Based on the analytic result of \({\widetilde{S}}_{\alpha } (m,n)\), we plot the \(\ln m\)-dependence of the Rényi information derived from \({\widetilde{S}}_{\alpha } (m,n)\). It is remarkable to note that the nearly vanishing region of the information becomes shorten with increasing \(\alpha \) and eventually disappears in the limit of \(\alpha \rightarrow \infty \). The physical implication of the result is briefly discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Data Availability

The datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.

Notes

  1. Eq. (2.2) is called a density of the eigenvalues of the Wishart matrix.

  2. Furthermore, F(mn) depends on the \(j^{th}\) term of some recurrence relations, where j is a function of m and n. This term is expressed with the aid of few special functions such as Lerch transcendent

    $$\begin{aligned} \Phi (z,s,a) = \sum _{k=0}^{\infty } \frac{z^k}{(k + a)^s}. \end{aligned}$$

References

  1. Lubkin, E.: Entropy of an \(n\)-system from its correlation with a \(k\)-reservoir. J. Math. Phys. 19, 1028 (1978)

    Article  ADS  Google Scholar 

  2. Lloyd, S., Pagels, H.: Complexity as thermodynamic depth. Ann. Phys. 188, 186 (1988)

    Article  ADS  MathSciNet  Google Scholar 

  3. Page, D.N.: Average entropy of a subsystem. Phys. Rev. Lett. 71, 1291 (1993). arXiv:gr-qc/9305007

    Article  ADS  MathSciNet  CAS  PubMed  Google Scholar 

  4. Bianchi, E., Hackl, L., Kieburg, M., Rigol, M., Vidmar, L.: Volume-law entanglement entropy of typical pure quantum states. PRX Quantum 3, 030201 (2022). arXiv:2112.06959 (quant-ph)

    Article  ADS  Google Scholar 

  5. Foong, S.K., Kanno, S.: Proof of page’s conjecture on the average entropy of a subsystem. Phys. Rev. Lett. 72, 1148 (1994)

    Article  ADS  MathSciNet  CAS  PubMed  Google Scholar 

  6. Sánchez-Ruiz, J.: Simple proof of Page’s conjecture on the average entropy of a subsystem. Phys. Rev. E 52, 5653 (1995)

    Article  ADS  Google Scholar 

  7. Sen, S.: Average entropy of a subsystem. Phys. Rev. Lett. 77, 1 (1996). arXiv:hep-th/9601132

    Article  ADS  CAS  PubMed  Google Scholar 

  8. Abramowitz, M., Stegun, I.A.: Handbook of Mathematical Functions. Dover Publications, New York (1972)

    Google Scholar 

  9. Page, D.N.: Information in black hole radiation. Phys. Rev. Lett. 71, 3743 (1993). arXiv:hep-th/9306083

    Article  ADS  MathSciNet  CAS  PubMed  Google Scholar 

  10. Hawking, S.W.: Breakdown of predictability in gravitational collapse. Phys. Rev. D 14, 2460 (1976)

    Article  ADS  MathSciNet  Google Scholar 

  11. Preskill, J.: Do black holes destroy information? arXiv:hep-th/9209058

  12. Hawking, S.W.: Black hole explosions? Nature 248, 30 (1974)

    Article  ADS  Google Scholar 

  13. Hawking, S.W.: Particle creation by black holes. Commun. Math. Phys. 43, 199 (1975)

    Article  ADS  MathSciNet  Google Scholar 

  14. Hayden, P., Preskill, J.: Black holes as mirrors: quantum information in random subsystems. J. High Energy Phys. 09, 120 (2007). arXiv:0708.4025 (hep-th)

    Article  ADS  MathSciNet  Google Scholar 

  15. Yoshida, B., Kitaev, A.: Efficient decoding for the Hayden–Preskill protocol. arXiv:1710.03363 (hep-th)

  16. Alonso-Serrano, A., Visser, M.: Multipartite analysis of average-subsystem entropies. Phys. Rev. A 96, 052302 (2017)

    Article  ADS  Google Scholar 

  17. Hwang, J., Lee, D.S., Nho, D., Oh, J., Park, H., Yeom, D., Zoe, H.: Page curves for tripartite systems. Class. Quant. Grav. 34, 145004 (2017). arXiv:1608.03391 (hep-th)

    Article  ADS  MathSciNet  Google Scholar 

  18. Shapourian, H., Liu, S., Kudler-Flam, J., Vishwanath, A.: Entanglement negativity spectrum of random mixed states: a diagrammatic approach. PRX Quantum 2, 030347 (2021). arXiv:2011.01277 (cond-mat)

    Article  ADS  Google Scholar 

  19. Liu, C., Chen, X., Balents, L.: Quantum Entanglement of the Sachdev–Ye–Kitaev Models. Phys. Rev. B 97, 245126 (2018). arXiv:1709.06259 (cond-mat)

    Article  ADS  CAS  Google Scholar 

  20. Yu, X., Gong, Z., Cirac, J.I.: Free-fermion page curve: canonical typicality and dynamical emergence. arXiv:2209.08871 (quant-ph)

  21. Ruggiero, P., Turkeshi, X.: Quantum information spreading in random spin chains. Phys. Rev. B 106, 134205 (2022). arXiv:2206.02934 (cond-mat)

    Article  ADS  CAS  Google Scholar 

  22. Iosue, J.T., Ehrenberg, A., Hangleiter, D., Deshpande, A., Gorshkov, A.V.: Page curves and typical entanglement in linear optics. arXiv:2209.06838 (quant-ph)

  23. Bianchi, E., Hackl, L., Kieburg, M.: The Page curve for fermionic Gaussian states. Phys. Rev. B 103, 241118 (2021). arXiv:2103.05416 (quant-ph)

    Article  ADS  Google Scholar 

  24. Bhattacharjee, B., Nandy, P., Pathak, T.: Eigenstate capacity and Page curve in fermionic Gaussian states. Phys. Rev. B 104, 214306 (2021). arXiv:2109.00557 (quant-ph)

    Article  ADS  CAS  Google Scholar 

  25. Yang, Z., Chamon, C., Hamma, A., Mucciolo, E.R.: Two-component structure in the entanglement spectrum of highly excited states. Phys. Rev. Lett. 115, 267206 (2015). arXiv:1506.01714 (cond-mat)

    Article  ADS  PubMed  Google Scholar 

  26. Vidmar, L., Rigol, M.: Entanglement entropy of eigenstates of quantum chaotic Hamiltonians. Phys. Rev. Lett. 119, 220603 (2017). arXiv:1708.08453 (cond-mat)

    Article  ADS  PubMed  Google Scholar 

  27. Nakagawa, Y.O., Watanabe, M., Fujita, H., Sugiura, S.: Universality in volume-law entanglement of scrambled pure quantum states. Nat. Commun. 9, 1635 (2018)

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  28. Kaneko, K., Iyoda, E., Sagawa, T.: Characterizing complexity of many-body quantum dynamics by higher-order eigenstate thermalization. Phys. Rev. A 101, 042126 (2020). arXiv:1911.10755 (cond-mat)

    Article  ADS  MathSciNet  CAS  Google Scholar 

  29. Lu, T., Grover, T.: Renyi entropy of chaotic eigenstates. Phys. Rev. E 99, 032111 (2019). arXiv:1709.08784 (cond-mat)

    Article  ADS  MathSciNet  CAS  PubMed  Google Scholar 

  30. Łydżba, P., Rigol, M., Vidmar, L.: Eigenstate entanglement entropy in random quadratic Hamiltonians. Phys. Rev. Lett. 125, 180604 (2020). arXiv:2006.11302 (cond-mat)

    Article  MathSciNet  PubMed  Google Scholar 

  31. Liu, H., Vardhan, S.: A dynamical mechanism for the Page curve from quantum chaos. J. High Energy Phys. 2021, 88 (2021). arXiv:2002.05734 (hep-th)

    Article  MathSciNet  Google Scholar 

  32. Sinha, S., Ray, S., Sinha, S.: Fingerprint of chaos and quantum scars in kicked Dicke model: an out-of-time-order correlator study. arXiv:2101.05155 (cond-mat)

  33. de Miranda, J.T., Micklitz, T.: Subsystem trace-distances of random states. arXiv:2210.03213 (quant-ph)

  34. Oliveira, R., Dahlsten, O.C.O., Plenio, M.B.: Generic entanglement can be generated efficiently. Phys. Rev. Lett. 98, 130502 (2007). arXiv:quant-ph/0605126

    Article  ADS  CAS  PubMed  Google Scholar 

  35. Plato, A.D.K., Dahlsten, O.C., Plenio, M.B.: Random circuits by measurements on weighted graph states. Phys. Rev. A 78, 042332 (2008). arXiv:0806.3058 (quant-ph)

    Article  ADS  Google Scholar 

  36. Bera, A., Roy, S.S.: Growth of genuine multipartite entanglement in random unitary circuits. Phys. Rev. A 102, 062431 (2020). arXiv:2003.12546 (quant-ph)

    Article  ADS  MathSciNet  CAS  Google Scholar 

  37. Hayden, P., Winter, A.: Counterexamples to the maximal \(p\)-norm multiplicativity conjecture for all \(p > 1\). Commun. Math. Phys. 284, 263 (2008). arXiv:0807.4753 (quant-ph)

    Article  ADS  Google Scholar 

  38. Brandao, F.G.S.L., Horodecki, M.: On Hastings’ counterexamples to the minimum output entropy additivity conjecture. Open. Syst. Inf. Dyn. 17, 31 (2010). arXiv:0907.3210 (quant-ph)

    Article  MathSciNet  Google Scholar 

  39. Fukuda, M., King, C.: Entanglement of random subspaces via the Hastings bound. J. Math. Phys. 51, 042201 (2010). arXiv:0907.5446 (quant-ph)

    Article  ADS  MathSciNet  Google Scholar 

  40. Prudnikov, A.P., Brychkov, Y.A., Marichev, O.I.: Integrals and Series. Gordon and Breach Science Publishers, New York (1986)

    Google Scholar 

  41. Gradshteyn, I.S., Ryzbik, I.M.: Table of Integrals, Series, and Products. Academic Press, San Diego (2000)

    Google Scholar 

  42. Bianchi, E., Donà, P.: Typical entanglement entropy in the presence of a center: Page curve and its variance. Phys. Rev. D 100, 105010 (2019). arXiv:1904.08370 (hep-th)

    Article  ADS  CAS  Google Scholar 

  43. Susskind, L., Thorlacius, L.: Gedanken experiments involving black holes. Phys. Rev. D 49, 966 (1994). arXiv:hep-th/9308100

    Article  ADS  MathSciNet  CAS  Google Scholar 

  44. Sekino, Y., Susskind, L.: Fast scramblers. J. High Energy Phys. 0810, 065 (2008). arXiv:0808.2096 (hep-th)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government (MSIT) (No. 2021R1A2C1094580).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to DaeKil Park.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kim, M., Hwang, MR., Jung, E. et al. Average Rényi entropy of a subsystem in random pure state. Quantum Inf Process 23, 37 (2024). https://doi.org/10.1007/s11128-023-04249-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11128-023-04249-x

Keywords

Navigation