Skip to main content
Log in

Primitivity for random quantum channels

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

In this paper, we consider the empirical spectrum distribution of the output of an n-fold composition of random quantum channels. As a corollary, we show that the random quantum channel is generically primitive. Our method is the graphical Weingarten calculus introduced by Collins and Nechita.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data Availability

All data generated or analyzed during this study are included in this published article.

References

  1. Wielandt, H.: Unzerlegbare, nicht negative matrizen. Math. Z. 52(1), 642–648 (1950)

    Article  MathSciNet  Google Scholar 

  2. Sanz, M., Pérez-García, D., Wolf, M.M., Cirac, J.I.: A quantum version of Wielandt’s inequality. IEEE Trans. Inf. Theory 56(9), 4668–4673 (2010)

    Article  MathSciNet  Google Scholar 

  3. Michałek, M., Shitov, Y.: Quantum version of Wielandt’s inequality revisited. IEEE Trans. Inf. Theory 65(8), 5239–5242 (2019)

    Article  MathSciNet  Google Scholar 

  4. Cirac, J.I., Garre-Rubio, J., Pérez-García, D.: Mathematical open problems in projected entangled pair states. Rev. Mat. Complut. 32(3), 579–599 (2019)

    Article  MathSciNet  Google Scholar 

  5. Pérez-García, D., Verstraete, F., Wolf, M.M., Cirac, J.I.: Matrix product state representations. Quantum Inf. Comput. 7(5), 401–430 (2007)

    MathSciNet  Google Scholar 

  6. Rahaman, M.: A new bound on quantum Wielandt inequality. IEEE Trans. Inf. Theory 66(1), 147–154 (2019)

    Article  MathSciNet  Google Scholar 

  7. Movassagh, R.: Generic local Hamiltonians are gapless. Phys. Rev. Lett. 119(22), 220 504.1-220 504.5 (2016)

    MathSciNet  Google Scholar 

  8. Watrous, J.: The Theory of Quantum Information. Cambridge University Press, Cambridge (2018)

    Book  Google Scholar 

  9. Collins, B., Nechita, I.: Random quantum channels I: graphical calculus and the bell state phenomenon. Commun. Math. Phys. 297(2), 345–370 (2010)

    Article  MathSciNet  ADS  Google Scholar 

  10. Collins, B., Nechita, I.: Random quantum channels II: entanglement of random subspaces, Rényi entropy estimates and additivity problems. Adv. Math. 226(2), 1181–1201 (2011)

    Article  MathSciNet  Google Scholar 

  11. Collins, B., Nechita, I.: Gaussianization and Eigenvalue statistics for random quantum channels III. Ann. Appl. Probab. 21(3), 1136–1179 (2011)

    Article  MathSciNet  Google Scholar 

  12. Collins, B., Yin, Z., Zhong, P.: The PPT square conjecture holds generically for some classes of independent states. J. Phys. A Math. Theory 51(42), 425301 (2018)

    Article  MathSciNet  ADS  Google Scholar 

  13. Hastings, M.B.: Superadditivity of communication capacity using entangled inputs. Nat. Phys. 5, 255 (2009)

    Article  CAS  Google Scholar 

  14. Lancine, C., Pérez-García, D.: Correlation length in random MPS and PEPS. Ann. Henri Poincare 12, 141–222 (2022)

    Article  MathSciNet  ADS  Google Scholar 

  15. Kukulski, R., Nechita, I., Pawela, L., Puchala, Z., Zyczkowski, K.: Generating random quantum channels. J. Math. Phys. 62(6), 062201 (2021)

    Article  MathSciNet  ADS  Google Scholar 

  16. Bruzda, W., Cappellini, V., Sommers, H.J., Życzkowski, K.: Random quantum operations. Phys. Lett. A 373(3), 320–324 (2009)

    Article  MathSciNet  CAS  ADS  Google Scholar 

  17. Choi, M.-D.: Completely positive linear maps on complex matrices. Linear Algebra Appl. 10(3), 285–290 (1975)

    Article  MathSciNet  Google Scholar 

  18. Weingarten, D.: Asymptotic behavior of group integrals in the limit of infinite rank. J. Math. Phys. 19(5), 999–1001 (1978)

    Article  MathSciNet  ADS  Google Scholar 

  19. Collins, B.: Moments and cumulants of polynomial random variables on unitarygroups, the itzykson-zuber integral, and free probability. Int. Math. Res. Notices 2003(17), 953–982 (2003)

    Article  Google Scholar 

  20. Collins, B., Śniady, P.: Integration with respect to the Haar measure on unitary, orthogonal and symplectic group. Commun. Math. Phys. 264(3), 773–795 (2006)

    Article  MathSciNet  ADS  Google Scholar 

  21. Nica, A., Speicher, R.: Lectures on the Combinatorics of Free Probability, vol. 13. Cambridge University Press, Cambridge (2006)

    Book  Google Scholar 

  22. Resnick, S.I.: A Probability Path. Birkhäuser, Boston (2014)

    Book  Google Scholar 

  23. Nechita, I.: Asymptotics of random density matrices. Ann. Henri Poincaré 8, 1521–1538 (2007)

    Article  MathSciNet  ADS  Google Scholar 

  24. Jia, Y., Capel, A.: A generic quantum Wielandt’s inequality. arXiv:2301.08241 (2023)

Download references

Acknowledgements

We would like to thank Ke Li for his valuable comment and suggestion. We are partially supported by the National Natural Science Foundation of China (NSFC)(12031004).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jing Bai.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix A: Some simple examples

Appendix A: Some simple examples

Let \(\Phi \) be a random quantum channel given by Eq. (1), let us consider \(\mathbb {E} (\textrm{Tr} [\Phi (X)]).\) It is clear that

$$\begin{aligned} \mathbb {E} (\textrm{Tr} [\Phi (X)]) = \textrm{Tr} [X]. \end{aligned}$$

Note that we assume that Y is a rank-one projection. Now we use the diagram language to calculate the expectation. The diagram for \(\textrm{Tr} [\Phi (X)]\) is given in Fig. 6. Since there is only one pair of \((U, \overline{U})\) boxes, the removal of the diagram is simple, see Fig. 7. Now let us count the contribution of the loops as follows:

  1. (1)

    \(\Box U\)”-loop, which contributes d;

  2. (2)

    \(\bigcirc U\)”-loop, which contributes D;

  3. (3)

    \(\bullet U\)”-loop, which contributes \(\textrm{Tr}[X]\);

  4. (4)

    The Weingarten function \({\text {Wg}}(dD,\mathbbm {1}_1)\).

Putting the above ingredients together, we obtain the correct value. Note that we have used the fact that \({\text {Wg}}(dD,\mathbbm {1}_1)=1/dD\), where \(\mathbbm {1}_1\) is the identity of \(\mathcal S_1\) [20].

Fig. 6
figure 6

Diagram for \(\textrm{Tr} [\Phi (X)]\)

Fig. 7
figure 7

Removal of the diagram \(\textrm{Tr}[\Phi (X)]\) related to \((\alpha , \beta )=(\mathbbm {1}_1,\mathbbm {1}_1)\)

Fig. 8
figure 8

Diagram for \(\textrm{Tr}[\Phi (X)^2]\)

Now we move to another simple example, \(\mathbb {E} (\textrm{Tr}[\Phi (X)^2])\). We refer to Fig. 8 for the diagram for \(\textrm{Tr}[\Phi (X)^2].\) Since there are two U-boxes and two \(\overline{U}\)-boxes in the diagram, then the removal depends on the elements of \(\mathcal S_2.\) Firstly, we numerate the U-boxes from left to right and the same for \(\overline{U}\)-boxes in the diagram. Hence there are four kinds of combinatorics for \((\alpha , \beta ),\) i.e., \((\alpha , \beta ) = (\mathbbm {1}_2, \mathbbm {1}_2)\), \((\alpha , \beta ) = (\mathbbm {1}_2, (1,2))\), \((\alpha , \beta ) = ((1,2), \mathbbm {1}_2)\), and \((\alpha , \beta ) = ((1,2), (1,2))\). Here \(\mathbbm {1}_2\) is the identity of \(\mathcal S_2.\) We only give two terms related to \((\alpha , \beta ) = (\mathbbm {1}_2, \mathbbm {1}_2)\) and \((\alpha , \beta ) = (\mathbbm {1}_2, (1,2))\), see Fig. 9.

Fig. 9
figure 9

Removal of the diagram \(\textrm{Tr}[\Phi (X)^2]\) related to \((\alpha , \beta ) = (\mathbbm {1}_2,\mathbbm {1}_2)\) and \((\alpha , \beta ) = (\mathbbm {1}_2, (1,2))\)

Let us consider the removal that relates to \((\alpha , \beta ) = (\mathbbm {1}_2, \mathbbm {1}_2)\), the contributions of the loops is as follows:

  1. (1)

    \(\Box U\)”-loop, which contributes \(d^2\);

  2. (2)

    \(\bigcirc U\)”-loop, which contributes D;

  3. (3)

    \(\bullet U\)”-loop, which contributes \(\textrm{Tr}[X]^2\);

  4. (4)

    The Weingarten function \({\text {Wg}}(dD, \mathbbm {1}_2)\).

For the removal that relates to \((\alpha , \beta ) = (\mathbbm {1}_2, (1,2))\), the contribution of the loops is as follows:

  1. (1’)

    \(\Box U\)”-loop, which contributes \(d^2\);

  2. (2’)

    \(\bigcirc U\)”-loop, which contributes D;

  3. (3’)

    \(\bullet U\)”-loop, which contributes \(\textrm{Tr}[X^2]\);

  4. (4’)

    The Weingarten function \({\text {Wg}}(dD, (1,2))\).

Similarly, we can deal with the removal for \((\alpha , \beta ) = ((1,2), \mathbbm {1}_2)\), which contributes \(dD^2 \textrm{Tr} [X]^2 {\text {Wg}}(dD, (1,2)).\) And for \((\alpha , \beta ) = ((1,2), (1,2)),\) the contribution is \(dD^2 \textrm{Tr} [X^2] {\text {Wg}}(dD, \mathbbm {1}_2).\) Thus, by summing all terms we obtain

$$\begin{aligned} \begin{aligned} \mathbb {E} (\mathrm{Tr[X]})^2&= d^2 D \textrm{Tr}[X]^2 {\text {Wg}}(dD, \mathbbm {1}_2) + d^2 D \textrm{Tr}[X^2]{\text {Wg}}(dD, (1,2)) \\&\quad + dD^2 \textrm{Tr} [X]^2 {\text {Wg}}(dD, (1,2))+ dD^2 \textrm{Tr} [X^2] {\text {Wg}}(dD, \mathbbm {1}_2)\\&= \frac{1}{(dD)^2-1} [D(d^2-1) \textrm{Tr}[X]^2 + d(D^2-1) \textrm{Tr}[X^2]], \end{aligned} \end{aligned}$$

where we have used the fact that \({\text {Wg}}(dD, \mathbbm {1}_2) = 1/[(dD)^2-1]\) and \({\text {Wg}}(dD, (1,2)) = -1/[dD((dD)^2-1)]\) [20].

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bai, J., Wang, J. & Yin, Z. Primitivity for random quantum channels. Quantum Inf Process 23, 47 (2024). https://doi.org/10.1007/s11128-023-04247-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11128-023-04247-z

Keywords

Navigation