Skip to main content
Log in

Bosonic entanglement generated by projective measurements in Einstein–Gauss–Bonnet black hole

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

The projective measurements on a vacuum performed by Rob, who hovers near the event horizon of the Einstein–Gauss–Bonnet black hole, will result in an entangled state for Alice moving along a geodesic. We show that the entanglement of the produced state is greatly dependent on Rob’s projective measurements and the parameters of the black hole, such as the horizon radius \(r_H\), Gauss–Bonnet coefficient \(\alpha \) and dimension d of the spacetime. We also present the conditions for Alice to get the maximal entangled state in this process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

Data sharing was not applicable to this article as no datasets were generated or analyzed during the current study.

References

  1. Unruh, W.G.: Notes on black-hole evaporation. Phys. Rev. D 14, 870 (1976)

    Article  ADS  Google Scholar 

  2. Unruh, W.G., Wald, R.M.: What happens when an accelerating observer detects a Rindler particle. Phys. Rev. D 29, 1047 (1984)

    Article  ADS  Google Scholar 

  3. Wald, R.M.: Quantum Field Theory in Curved Spacetime and Black Hole Thermodynamic. The University of Chicago Press (1994)

  4. Soffel, M., Müller, B., Greiner, W.: Dirac particles in Rindler space. Phys. Rev. D 22, 1935 (1980)

    Article  ADS  Google Scholar 

  5. Longhi, P., Soldati, R.: Unruh effect revisited. Phys. Rev. D 83, 107701 (2011)

    Article  ADS  Google Scholar 

  6. Martín-Martínez, E., Fuentes, I., Man, R.B.: Using Berry’s phase to detect the Unruh effect at lower accelerations. Phys. Rev. Lett. 107, 131301 (2011)

    Article  ADS  Google Scholar 

  7. Olson, S.J., Ralph, T.C.: Entanglement between the future and the past in the quantum vacuum. Phys. Rev. Lett. 106, 110404 (2011)

    Article  ADS  Google Scholar 

  8. Peres, A., Terno, D.R.: Quantum information and relativity theory. Rev. Mod. Phys. 76, 93 (2004)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  9. Alsing, P.M., Milburn, G.J.: Teleportation with a uniformly accelerated partner. Phys. Rev. Lett. 91, 180404 (2003)

    Article  ADS  Google Scholar 

  10. Fuentes-Schuller, I., Mann, R.B.: Alice falls into a black hole: entanglement in noninertial frames. Phys. Rev. Lett. 95, 120404 (2005)

    Article  ADS  MathSciNet  Google Scholar 

  11. Martín-Martínez, E., León, J.: Quantum correlations through event horizons: fermionic versus bosonic entanglement. Phys. Rev. A 81, 032320 (2010)

    Article  ADS  Google Scholar 

  12. Alsing, P.M., Fuentes-Schuller, I., Mann, R.B., Tessier, T.E.: Entanglement of Dirac fields in noninertia frames. Phys. Rev. A 74, 032326 (2006)

    Article  ADS  Google Scholar 

  13. Wang, J., Jing, J.: Multipartite entanglement of fermionic systems in noninertial frames. Phys. Rev. A 83, 022314 (2011)

    Article  ADS  Google Scholar 

  14. Tian, Z., Jing, J.: How the Unruh effect affects transition between classical and quantum decoherences. Phys. Lett. B 707, 264–271 (2012)

    Article  ADS  Google Scholar 

  15. Tian, Z., Jing, J.: Geometric phase of two-level atoms and thermal nature of de Sitter spacetime. J. High Energy Phys. 04, 109 (2013)

    Article  ADS  MathSciNet  Google Scholar 

  16. Tian, Z., Wang, J., Fan, H., Jing, J.: Relativistic quantum metrology in open system dynamics. Sci. Rep. 5, 7946 (2015)

    Article  ADS  Google Scholar 

  17. Liu, X., Tian, Z., Wang, J., Jing, J.: Inhibiting decoherence of two-level atom in thermal bath by presence of boundaries. Quantum Inf. Process. 15, 3677–3694 (2016)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  18. Liu, X., Tian, Z., Wang, J., Jing, J.: Protecting quantum coherence of two-level atoms from vacuum fluctuations of electromagnetic field. Ann. Phys. 366, 102–112 (2015)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  19. Yang, Y., Jing, J., Zhao, Z.: Enhancing estimation precision of parameter for a two-level atom with circular motion. Quantum Inf. Process. 18, 120 (2019)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  20. Ge, X.-H., Kim, S.P.: Quantum entanglement and teleportation in higher dimensional black hole spacetimes. Class. Quantum Grav. 25, 075011 (2008)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  21. Jing, L., Jing, J.: Generating entangled fermions by projective measurements in Gauss–Bonnet spacetime. Quantum Inf. Process. 20, 61 (2021)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  22. Pan, Q., Jing, J.: Hawking radiation, enatanglement and teleportation in background of an asymptotically flat static black hole. Phys. Rev. D 78, 065015 (2008)

    Article  ADS  MathSciNet  Google Scholar 

  23. Pan, Q., Jing, J.: Degradation of nonmaximal entanglement of scalar and Dirac fields in noninertial frames. Phys. Rev. A 77, 024302 (2008)

    Article  ADS  Google Scholar 

  24. Martín-Martínez, E., Garay, L.J., León, J.: Unveiling quantum entanglement degradation near a Schwarzschild black hole. Phys. Rev. D 82, 064006 (2010)

    Article  ADS  Google Scholar 

  25. Wang, J., Pan, Q., Chen, S., Jing, J.: Entanglement of coupled massive scalar field in background of Dilaton black hole. Phys. Lett. B 677, 186–189 (2009)

    Article  ADS  MathSciNet  Google Scholar 

  26. Wang, J., Pan, Q., Jing, J.: Entanglement redistribution in the Schwarzschild spacetime. Phys. Lett. B 692, 202–205 (2010)

    Article  ADS  Google Scholar 

  27. Esfahani, B.N., Shamirzaie, M., Soltani, M.: Reduction of entanglement degradation and teleportation improvement in Einstein–Gauss–Bonnet gravity. Phys. Rev. D 84, 025024 (2011)

    Article  ADS  Google Scholar 

  28. Han, M., Olson, J.S., Dowling, J.P.: Generating entangled photons from the vacuum by accelerated measurements: quantum information theory meets the Unruh–Davies effect. Phys. Rev. A 78, 022302 (2008)

    Article  ADS  Google Scholar 

  29. Ostapchuk, C.M., Mann, R.B.: Generating entangled fermions by accelerated measurements on the vacuum. Phys. Rev. A 79, 042333 (2009)

    Article  ADS  Google Scholar 

  30. Wang, J., Pan, Q., Jing, J.: Projective measurements and generation of entangled Dirac particles in Schwarzschild Spacetime. Annals Phys 325, 1190–1197 (2010)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  31. Dehghani, M.H.: Accelerated expansion of the universe in Gauss–Bonnet gravity. Phys. Rev. D 70, 064019 (2004)

    Article  ADS  MathSciNet  Google Scholar 

  32. Damour, T., Ruffini, R.: Black-hole evaporation in the Klein–Sauter–Heisenberg–Euler formalism. Phys. Rev. D 14, 332 (1976)

    Article  ADS  Google Scholar 

  33. Sannan, S.: Heuristic derivation of the probability distributions of particles emitted by a black hole. Gen. Relat. Grav. 20, 239–246 (1988)

    Article  ADS  MathSciNet  Google Scholar 

  34. Zhao, Z., Gui, Y.X.: The connection between Unruh scheme and Damour–Ruffini scheme in Rindler space-time and \(\eta -\varepsilon \) space-time. Nuov. Cim. B 109, 355–361 (1994)

    Article  ADS  MathSciNet  Google Scholar 

  35. Birrell, N.D., Davies, P.C.W.: Quantum Field in Curved Space. Cambridge University Press, Cambridge (1982)

    Book  MATH  Google Scholar 

  36. Barnett, S.M., Radmore, P.M.: Method in Theoretical Quantum Optics. Oxford University Press, New York (1997)

    MATH  Google Scholar 

  37. Ahn, D.: Final state boundary condition of the Schwarzschild black hole. Phys. Rev. D 74, 084010 (2006)

    Article  ADS  MathSciNet  Google Scholar 

  38. Horodecki, M., Horodecki, P., Horodecki, R.: Separability of mixed states: necessary and sufficient conditions. Phys. Lett. A 223, 1–8 (1996)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  39. Peres, A.: Separability criterion for density matrices. Phys. Rev. Lett. 77, 1413 (1996)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  40. Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information. Cambridge University Press, Cambridge (2000)

    MATH  Google Scholar 

Download references

Acknowledgements

This work was by the Grant of NSFC No. 12035005, and National Key Research and Development Program of China No. 2020YFC2201400.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jiliang Jing.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jing, L., Jing, J. Bosonic entanglement generated by projective measurements in Einstein–Gauss–Bonnet black hole. Quantum Inf Process 22, 371 (2023). https://doi.org/10.1007/s11128-023-04121-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11128-023-04121-y

Keywords

Navigation