Skip to main content
Log in

Generating entangled fermions by projective measurements in Gauss–Bonnet spacetime

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

The properties of the ferimonic entangled states resulting from the projective measurements in the Gauss–Bonnet spacetime are studied. It is found that the degree of entanglement, for projection onto double particles state, increases monotonously as the Hawking temperature T increases but decreases monotonously as the frequency of the detected particles increases; and for projection onto single particle state, the particle states are entangled for spin picture but are separable states for occupation number picture as \(T\rightarrow 0\), while the particle states for the both pictures are entangled as \(T\rightarrow \infty \). It is also shown that the Gauss–Bonnet coefficient \(\alpha \) and dimension d of the spacetime will affect the entanglement greatly.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information. Cambridge University Press, Cambridge (2000)

    MATH  Google Scholar 

  2. Peres, A., Terno, D.R.: Quantum information and relativity theory. Rev. Mod. Phys. 76, 93 (2004)

    Article  MathSciNet  ADS  Google Scholar 

  3. Alsing, P.M., Milburn, G.J.: Teleportation with a uniformly accelerated partner. Phys. Rev. Lett. 91, 180404 (2003)

    Article  ADS  Google Scholar 

  4. Fuentes-Schuller, I., Mann, R.B.: Alice falls into a black hole: entanglement in noninertial frames. Phys. Rev. Lett. 95, 120404 (2005)

    Article  MathSciNet  ADS  Google Scholar 

  5. Martín-Martínez, E., León, J.: Quantum correlations through event horizons: fermionic versus bosonic entanglement. Phys. Rev. A 81, 032320 (2010)

    Article  ADS  Google Scholar 

  6. Alsing, P.M., Fuentes-Schuller, I., Mann, R.B., Tessier, T.E.: Entanglement of Dirac fields in noninertia frames. Phys. Rev. A 74, 032326 (2006)

    Article  ADS  Google Scholar 

  7. Pan, Q., Jing, J.: Hawking radiation, enatanglement and teleportation in background of an asymptotically flat static black hole. Phys. Rev. D 78, 065015 (2008)

    Article  MathSciNet  ADS  Google Scholar 

  8. León, J., Martín-Martínez, E.: Spin and occupation number entanglement of Dirac fields for noninertial observers. Phys. Rev. A 80, 012314 (2009)

    Article  ADS  Google Scholar 

  9. Pan, Q., Jing, J.: Degradation of non-maximal entanglement of scalar and Dirac fields in non-inertial frames. Phys. Rev. A 77, 024302 (2008)

    Article  ADS  Google Scholar 

  10. Ge, X.-H., Kim, S.P.: Quantum entanglement and teleportation in higher dimensional black hole spacetimes. Class. Quantum Grav 25, 075011 (2008)

    Article  MathSciNet  ADS  Google Scholar 

  11. Adesso, G., Fuentes-Schuller, I., Ericsson, M.: Continuous-variable entanglement sharing in noninertial frames. Phys. Rev. A 76, 062112 (2007)

    Article  MathSciNet  ADS  Google Scholar 

  12. Huang, Z., Tian, Z.: Dynamics of quantum entanglement in de Sitter spacetime and thermal Minkowski spacetime. Nucl. Phys. B 923, 458 (2017)

    Article  MathSciNet  ADS  Google Scholar 

  13. Huang, Z.: Quantum entanglement of nontrivial spacetime topology. Eur. Phys. J. C 80, 131 (2020)

    Article  ADS  Google Scholar 

  14. Dong, Q., Sun, G.H., Toutounji, M., Dong, S.H.: Tetrapartite entanglement measures of GHZ state with nonuniform acceleration. Optics 201, 163487 (2020)

    ADS  Google Scholar 

  15. Qiang, W.C., Dong, Q., Sanchez, M.A.M., Sun, G.H., Dong, S.H.: Entanglement property of the Werner state in accelerated frames. Quant. Inf. Process. 18, 314 (2019)

    Article  MathSciNet  ADS  Google Scholar 

  16. Torres-Arenas, A.J., Lopez-Zuniga, E., Saldana-Herrera, J.A., Dong, Q., Sun, G.H., Dong, S.H.: Tetrapartite entanglement measures of W-class in noninertial frames. Chin. Phys. B 28, 070301 (2019)

    Article  ADS  Google Scholar 

  17. Dong, Q., Torres-Arenas, A.J., Sun, G.H., Qiang, W.C., Dong, S.H.: Entanglement measures of a new type pseudo-pure state in accelerated frames. Front. Phys. 14, 21603 (2019)

    Article  ADS  Google Scholar 

  18. Qiang, W.C., Sun, G.H., Dong, Q., Dong, S.H.: Genuine multipartite concurrence for entanglement of Dirac fields in noninertial frames. Phys. Rev. A 98, 022320 (2018)

    Article  ADS  Google Scholar 

  19. Wang, J., Jing, J.: Multipartite entanglement of fermionic systems in noninertial frames. Phys. Rev. A 83, 022314 (2011)

    Article  ADS  Google Scholar 

  20. Unruh, W.G.: Notes on black-hole evaporation. Phys. Rev. D 14, 870 (1976)

    Article  ADS  Google Scholar 

  21. Martín-Martínez, E., Garay, L.J., León, J.: Unveiling quantum entanglement degradation near a Schwarzschild black hole. Phys. Rev. D 82, 064006 (2010)

    Article  ADS  Google Scholar 

  22. Wang, J., Pan, Q., Chen, S., Jing, J.: Entanglement of coupled massive scalar field in background of Dilaton black hole. Phys. Lett. B 677, 186–189 (2009)

    Article  MathSciNet  ADS  Google Scholar 

  23. Wang, J., Pan, Q., Jing, J.: Entanglement redistribution in the Schwarzschild spacetime. Phys. Lett. B 602, 202 (2010)

    Article  ADS  Google Scholar 

  24. Esfahani, B.N., Shamirzaie, M., Soltani, M.: Reduction of entanglement degradation and teleportation improvement in Gauss–Bonnet gravity. Phys. Rev. D 84, 025024 (2011)

    Article  ADS  Google Scholar 

  25. Han, M., Olson, J.S., Dowling, J.P.: Generating entangled photons from the vacuum by accelerated measurements: quantum information theory meets the Unruh–Davies effect. Phys. Rev. A 78, 022302 (2008)

    Article  ADS  Google Scholar 

  26. Ostapchuk, D.C.M., Mann, R.B.: Generating entangled fermions by accelerated measurements on the vacuum. Phys. Rev. A 79, 04233 (2009)

    Article  Google Scholar 

  27. Wang, J., Pan, Q., Jing, J.: Projective measurements and generation of entangled Dirac particles in Schwarzschild spacetime. Ann. Phys. 325, 1190–1197 (2010)

    Article  MathSciNet  ADS  Google Scholar 

  28. Dehghani, M.H.: Accelerated expansion of the universe in Gauss–Bonnet gravity. Phys. Rev. D 70, 064009 (2004)

    Article  MathSciNet  ADS  Google Scholar 

  29. Das, S.R., Gibbons, G.W., Mathur, S.D.: Universailty of low energy absorption cross-sections for black holes. Phys. Rev. Lett. 78, 417–419 (1997)

    Article  ADS  Google Scholar 

  30. Gibbons, G.W., Steif, A.R.: Anomalous fermion production in gravitational collapse. Phys. Lett. B 314, 13–20 (1993)

    Article  MathSciNet  ADS  Google Scholar 

  31. Damour, T., Ruffini, R.: Black-hole evaporation in the Klein–Sauter–Heisenberg–Euler formalism. Phys. Rev. D 14, 332 (1976)

    Article  ADS  Google Scholar 

  32. Sannan, S.: Heuristic derivation of the probability distributions of particles emitted by a black hole. Gen. Relat. Gravit. 20, 239 (1988)

    Article  MathSciNet  ADS  Google Scholar 

  33. Zhao, Z., Gui, Y.X.: The connection between Unruh scheme and Damour–Ruffini scheme in Rindler space-time and \(\eta -\varepsilon \) space-time. IL Nuovo Cimento B 109, 355 (1994)

    Article  MathSciNet  Google Scholar 

  34. Birrell, N.D., Davies, P.C.W.: Quantum Field in Curved Space. Cambridge University Press, Cambridge (1982)

    Book  Google Scholar 

  35. Cho, H.T., Cornell, A.S., Doukas, J., Naylor, W.: Split fermion quasi-normal modes. Phys. Rev. D 75, 104005 (2007)

    Article  ADS  Google Scholar 

  36. Cho, H.T., Cornell, A.S., Doukas, J., Naylor, W.: Fermion excitations of a tense Brane black hole. Phys. Rev. D 77, 041502 (2008)

    Article  MathSciNet  ADS  Google Scholar 

  37. Camporesi, R., Higuchi, A.: On the eigenfunctions of the Dirac operator on spheres and real hyperbolic spaces. J. Geom. Phys. 20, 1–18 (1996)

    Article  MathSciNet  ADS  Google Scholar 

  38. Barnett, S.M., Radmore, P.M.: Methods in Theoretical Quantum Optics. Oxford University Press, New York (1997)

    MATH  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China under Grant No. 11875025.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jiliang Jing.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jing, L., Jing, J. Generating entangled fermions by projective measurements in Gauss–Bonnet spacetime. Quantum Inf Process 20, 61 (2021). https://doi.org/10.1007/s11128-021-02995-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11128-021-02995-4

Keywords

Navigation