Skip to main content
Log in

Characterization of quantumness of non-Gaussian states under the influence of Gaussian channel

  • Regular Article
  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

The impact of a noisy Gaussian channel on a wide range of non-Gaussian input states is studied in this work. The nonclassical nature of the states, both input and output, is developed by studying the corresponding photon statistics and quasi-probability distributions. It is found that photon addition has more robust quantum mechanical properties as compared to the photon subtraction case. The threshold value of the noise parameter corresponding to the transition from partial negative (W and P) and zero (Q) to completely positive definite, at the center of phase space, depends not only on the average number of thermal photons in the state but also on the squeezing parameter. In addition, it is observed that the nonclassicality of the kth number filtrated thermal state could be further enhanced by adding photon(s).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

Data Availability

Data sharing is not applicable to this article as no datasets were generated or analyzed during the current study.

References

  1. Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, Cambridge (2010)

    MATH  Google Scholar 

  2. Wilde, M.M.: Quantum Information Theory. Cambridge University Press, Cambridge (2013)

    MATH  Google Scholar 

  3. Gruska, J.: Quantum Computing, vol. 2005. McGraw-Hill, London (1999)

    MATH  Google Scholar 

  4. Bennett, C.H., Brassard, G., Ekert, A.K.: Quantum cryptography. Sci. Am. 267(4), 50–57 (1992)

    Google Scholar 

  5. Buluta, I., Nori, F.: Quantum simulators. Science 326(5949), 108–111 (2009)

    ADS  Google Scholar 

  6. Dell’Anno, F., De Siena, S., Illuminati, F.: Multiphoton quantum optics and quantum state engineering. Phys. Rep. 428(2–3), 53–168 (2006)

    ADS  MathSciNet  Google Scholar 

  7. Makhlin, Y., Schön, G., Shnirman, A.: Quantum-state engineering with Josephson-junction devices. Rev. Mod. Phys. 73(2), 357 (2001)

    ADS  MATH  Google Scholar 

  8. Banerjee, S.: Open Quantum System: Dynamics of Nonclassical Evolution. Springer Singapore, Singapore (2019)

    Google Scholar 

  9. Louisell, W.H.: Quantum Statistical Properties of Radiation. John Wiley and Sons Inc, New York (1973)

    MATH  Google Scholar 

  10. Paris, M.G., Illuminati, F., Serafini, A., De Siena, S.: Purity of gaussian states: measurement schemes and time evolution in noisy channels. Phys. Rev. A 68(1), 012314 (2003)

    ADS  Google Scholar 

  11. Lvovsky, A., Grangier, P., Ourjoumtsev, A., Parigi, V., Sasaki, M., Tualle-Brouri, R.: Production and applications of non-Gaussian quantum states of light. arXiv:2006.16985 (2020)

  12. Weedbrook, C., Pirandola, S., García-Patrón, R., Cerf, N.J., Ralph, T.C., Shapiro, J.H., Lloyd, S.: Gaussian quantum information. Rev. Mod. Phys. 84, 621–669 (2012)

    ADS  Google Scholar 

  13. O’brien, J.L., Furusawa, A., Vučković, J.: Photonic quantum technologies. Nature Photonics 3(12), 687–695 (2009)

  14. Adesso, G., Ragy, S., Lee, A.R.: Continuous variable quantum information: Gaussian states and beyond. Open Syst. Inf. Dyn. 21(01n02), 1440001 (2014)

    MathSciNet  MATH  Google Scholar 

  15. Ourjoumtsev, A., Dantan, A., Tualle-Brouri, R., Grangier, P.: Increasing entanglement between gaussian states by coherent photon subtraction. Phys. Rev. Lett. 98(3), 030502 (2007)

    ADS  Google Scholar 

  16. Laurat, J., Keller, G., Oliveira-Huguenin, J.A., Fabre, C., Coudreau, T., Serafini, A., Adesso, G., Illuminati, F.: Entanglement of two-mode gaussian states: characterization and experimental production and manipulation. J. Opt. B: Quantum Semiclassical Opt. 7(12), S577 (2005)

    ADS  Google Scholar 

  17. Bartlett, S.D., Sanders, B.C., Braunstein, S.L., Nemoto, K.: Efficient classical simulation of continuous variable quantum information processes. Phys. Rev. Lett. 88, 097904 (2002)

    ADS  Google Scholar 

  18. Lloyd, S., Braunstein, S.L.: Quantum computation over continuous variables. Phys. Rev. Lett. 82, 1784–1787 (1999)

    ADS  MathSciNet  MATH  Google Scholar 

  19. Menicucci, N.C., van Loock, P., Gu, M., Weedbrook, C., Ralph, T.C., Nielsen, M.A.: Universal quantum computation with continuous-variable cluster states. Phys. Rev. Lett. 97, 110501 (2006)

    ADS  Google Scholar 

  20. Gu, M., Weedbrook, C., Menicucci, N.C., Ralph, T.C., van Loock, P.: Quantum computing with continuous-variable clusters. Phys. Rev. A 79, 062318 (2009)

    ADS  Google Scholar 

  21. Menicucci, N.C.: Fault-tolerant measurement-based quantum computing with continuous-variable cluster states. Phys. Rev. Lett. 112, 120504 (2014)

    ADS  Google Scholar 

  22. Arzani, F., Treps, N., Ferrini, G.: Polynomial approximation of non-Gaussian unitaries by counting one photon at a time. Phys. Rev. A 95, 052352 (2017)

    ADS  Google Scholar 

  23. Gottesman, D., Kitaev, A., Preskill, J.: Encoding a qubit in an oscillator. Phys. Rev. A 64, 012310 (2001)

    ADS  Google Scholar 

  24. Baragiola, B.Q., Pantaleoni, G., Alexander, R.N., Karanjai, A., Menicucci, N.C.: All-gaussian universality and fault tolerance with the Gottesman–Kitaev–Preskill code. Phys. Rev. Lett. 123, 200502 (2019)

    ADS  Google Scholar 

  25. Kim, M.S.: Recent developments in photon-level operations on travelling light fields. J. Phys. B At. Mol. Opt. Phys. 41, 133001 (2008)

    ADS  Google Scholar 

  26. Xu, X.-X., Yuan, H.-C., Wang, Y.: Comparison between photon annihilation-then-creation and photon creation-then-annihilation thermal states: non-classical and non-Gaussian properties. Chin. Phys. B 23, 070301 (2014)

    ADS  Google Scholar 

  27. Zhou, J., Fan, H.-Y., Song, J.: Photon-subtracted two-mode squeezed thermal state and its photon-number distribution. Int. J. Theor. Phys. 51, 1591–1599 (2012)

    MATH  Google Scholar 

  28. Hong-Chun, Y., Xue-Xiang, X., Hong-Yi, F.: Generalized photon-added coherent state and its quantum statistical properties. Chin. Phys. B 19, 104205 (2010)

    ADS  Google Scholar 

  29. Lee, S.-Y., Nha, H.: Quantum state engineering by a coherent superposition of photon subtraction and addition. Phys. Rev. A 82, 053812 (2010)

    ADS  Google Scholar 

  30. Lee, S.-Y., Ji, S.-W., Kim, H.-J., Nha, H.: Enhancing quantum entanglement for continuous variables by a coherent superposition of photon subtraction and addition. Phys. Rev. A 84, 012302 (2011)

    ADS  Google Scholar 

  31. Scalora, M., Vincenti, M.A., de Ceglia, D., Roppo, V., Centini, M., Akozbek, N., Bloemer, M.J.: Second- and third-harmonic generation in metal-based structures. Phys. Rev. A 82, 043828 (2010)

    ADS  Google Scholar 

  32. Zhou, J., Song, J., Yuan, H., Zhang, B.: The statistical properties of a new type of photon-subtracted squeezed coherent state. Chin. Phys. Lett. 29(5), 050301 (2012)

    ADS  Google Scholar 

  33. Dao-Ming, L., Hong-Yi, F.: Photon number cumulant expansion and generating function for photon added- and subtracted-two-mode squeezed states. Chin. Phys. B 23, 020302 (2013)

    Google Scholar 

  34. Wang, S., Hou, L.-L., Xu, X.-F.: Higher nonclassical properties and entanglement of photon-added two-mode squeezed coherent states. Opt. Commun. 335, 108–115 (2015)

    ADS  Google Scholar 

  35. Vogel, K., Akulin, V.M., Schleich, W.P.: Quantum state engineering of the radiation field. Phys. Rev. Lett. 71, 1816–1819 (1993)

    ADS  Google Scholar 

  36. Sperling, J., Vogel, W., Agarwal, G.S.: Balanced homodyne detection with on-off detector systems: observable nonclassicality criteria. Europhys. Lett. 109, 34001 (2015)

    ADS  Google Scholar 

  37. Miranowicz, A., Leoński, W.: Dissipation in systems of linear and nonlinear quantum scissors. J. Opt. B: Quantum Semiclassical Opt. 6(3), S43 (2004)

    ADS  Google Scholar 

  38. Marchiolli, M.A., José, W.D.: Engineering superpositions of displaced number states of a trapped ion. Phys. A 337(1–2), 89–108 (2004)

    Google Scholar 

  39. Pathak, A.: Elements of Quantum Computation and Quantum Communication. CRC Press, Boca Raton (2013)

    MATH  Google Scholar 

  40. Agarwal, G.S.: Quantum Optics. Cambridge University Press, Cambridge (2012)

    MATH  Google Scholar 

  41. Agarwal, G.S., Tara, K.: Nonclassical properties of states generated by the excitations on a coherent state. Phys. Rev. A 43, 492–497 (1991)

    ADS  Google Scholar 

  42. Lee, S.-Y., Nha, H.: Quantum state engineering by a coherent superposition of photon subtraction and addition. Phys. Rev. A 82(5), 053812 (2010)

    ADS  Google Scholar 

  43. Yang, Y., Li, F.-L.: Nonclassicality of photon-subtracted and photon-added-then-subtracted gaussian states. J. Opt. Soc. Am. B 26, 830–835 (2009)

    ADS  MathSciNet  Google Scholar 

  44. Escher, B., Avelar, A., da Rocha Filho, T., Baseia, B.: Controlled hole burning in the fock space via conditional measurements on beam splitters. Phys. Rev. A 70(2), 025801 (2004)

    ADS  Google Scholar 

  45. Zavatta, A., Viciani, S., Bellini, M.: Quantum-to-classical transition with single-photon-added coherent states of light. Science 306(5696), 660–662 (2004)

    ADS  Google Scholar 

  46. Podoshvedov, S.A.: Extraction of displaced number states. JOSA B 31(10), 2491–2503 (2014)

    ADS  Google Scholar 

  47. Malpani, P., Alam, N., Thapliyal, K., Pathak, A., Narayanan, V., Banerjee, S.: Lower- and higher-order nonclassical properties of photon added and subtracted displaced fock states. Ann. Phys. 531(2), 1800318 (2019)

    Google Scholar 

  48. Malpani, P., Thapliyal, K., Alam, N., Pathak, A., Narayanan, V., Banerjee, S.: Impact of photon addition and subtraction on nonclassical and phase properties of a displaced fock state. Opt. Commun. 459, 124964 (2020)

    Google Scholar 

  49. Malpani, P., Alam, N., Thapliyal, K., Pathak, A., Narayanan, V., Banerjee, S.: Manipulating nonclassicality via quantum state engineering processes: vacuum filtration and single photon addition. Ann. Phys. 532(1), 1900337 (2020)

    MathSciNet  Google Scholar 

  50. Debnath, K., Kiilerich, A.H., Benseny, A., Mølmer, K.: Coherent spectral hole burning and qubit isolation by stimulated Raman adiabatic passage. Phys. Rev. A 100, 023813 (2019)

    ADS  Google Scholar 

  51. Xu, X.-X., Yuan, H.-C.: Dynamical evolution of photon-added thermal state in thermal reservoir. Chin. Phys. B 28(11), 110301 (2019)

    ADS  Google Scholar 

  52. Hu, L.-Y., Zhang, Z.-M.: Nonclassicality and decoherence of photon-added squeezed thermal state in thermal environment. JOSA B 29(4), 529–537 (2012)

    ADS  Google Scholar 

  53. Hu, L.-Y., Xu, X.-X., Wang, Z.-S., Xu, X.-F.: Photon-subtracted squeezed thermal state: nonclassicality and decoherence. Phys. Rev. A 82(4), 043842 (2010)

    ADS  Google Scholar 

  54. Park, J., Lee, J., Baek, K., Nha, H.: Quantifying non-Gaussianity of a quantum state by the negative entropy of quadrature distributions. Phys. Rev. A 104, 032415 (2021)

    ADS  MathSciNet  Google Scholar 

  55. Genoni, M.G., Paris, M.G.A., Banaszek, K.: Measure of the non-Gaussian character of a quantum state. Phys. Rev. A 76, 042327 (2007)

    ADS  Google Scholar 

  56. Ahmad, M.A., Liu, S.-T.: Superposition of two coherent states \(\pi \) out of phase with average photon number as relative phase. Optik 120(2), 68–73 (2009)

    ADS  Google Scholar 

  57. Fan, H.Y.: Operator ordering in quantum optics theory and the development of Dirac’s symbolic method. J. Opt. B Quantum Semiclassical Opt. 5, R147 (2003)

    ADS  MathSciNet  Google Scholar 

  58. Dirac, P.A.M.: The Principles of Quantum Mechanics, vol. 27. Oxford University Press, Oxford (1981)

    Google Scholar 

  59. Scully, M.O., Zubairy, M.S.: Quantum Optics. Cambridge University Press, Cambridge (1997)

    Google Scholar 

  60. Puri, R.R., et al.: Mathematical Methods of Quantum Optics, vol. 79. Springer, Berlin (2001)

    MATH  Google Scholar 

  61. Gerry, C., Knight, P.: Coherent States, pp. 43–73. Cambridge University Press, Cambridge (2004)

    Google Scholar 

  62. Thapliyal, K., Banerjee, S., Pathak, A., Omkar, S., Ravishankar, V.: Quasiprobability distributions in open quantum systems: spin-qubit systems. Ann. Phys. 362, 261–286 (2015)

    ADS  MathSciNet  MATH  Google Scholar 

  63. Hong-Yi, F., Zaidi, H.R., Klauder, J.R.: New approach for calculating the normally ordered form of squeeze operators. Phys. Rev. D 35, 1831–1834 (1987)

    ADS  MathSciNet  Google Scholar 

  64. Dodonov, V.V.: Nonclassical’ states in quantum optics: a ‘squeezed’ review of the first 75 years. J. Opt. B Quantum Semiclassical Opt. 4, R1 (2002)

    ADS  MathSciNet  Google Scholar 

  65. Hu, L.-Y., Zhang, Z.-M.: Nonclassicality and decoherence of photon-added squeezed thermal state in thermal environment. J. Opt. Soc. Am. B 29, 529–537 (2012)

    ADS  Google Scholar 

  66. Hall, M.J.W.: Gaussian noise and quantum-optical communication. Phys. Rev. A 50, 3295–3303 (1994)

    ADS  Google Scholar 

  67. Zhang, Y., Luo, S.: Quantifying decoherence of gaussian noise channels. J. Stat. Phys. 183(2), 1–18 (2021)

    MathSciNet  MATH  Google Scholar 

  68. Cahill, K.E., Glauber, R.J.: Ordered expansions in boson amplitude operators. Phys. Rev. 177(5), 1857 (1969)

    ADS  Google Scholar 

  69. Agarwal, G.S.: Relation between atomic coherent-state representation, state multipoles, and generalized phase-space distributions. Phys. Rev. A 24(6), 2889 (1981)

    ADS  MathSciNet  Google Scholar 

  70. Schleich, W.P.: Quantum Optics in Phase Space. John Wiley & Sons, London (2011)

    MATH  Google Scholar 

  71. Thapliyal, K., Banerjee, S., Pathak, A.: Tomograms for open quantum systems: In(finite) dimensional optical and spin systems. Ann. Phys. 366, 148–167 (2016)

    ADS  MathSciNet  MATH  Google Scholar 

  72. Malpani, P., Thapliyal, K., Alam, N., Pathak, A., Narayanan, V., Banerjee, S.: Quantum phase properties of photon added and subtracted displaced fock states. Ann. Phys. 531(11), 1900141 (2019)

    MathSciNet  Google Scholar 

  73. Husimi, K.: Some formal properties of the density matrix. Proc. Physico Math. Soc. Jpn. 3rd Series 22(4), 264–314 (1940)

    MATH  Google Scholar 

  74. Korsch, H., Müller, C., Wiescher, H.: On the zeros of the Husimi distribution. J. Phys. A: Math. Gen. 30(20), L677 (1997)

    ADS  MathSciNet  MATH  Google Scholar 

  75. Kenfack, A., Życzkowski, K.: Negativity of the Wigner function as an indicator of non-classicality. J. Opt. B: Quantum Semiclassical Opt. 6(10), 396 (2004)

    ADS  MathSciNet  Google Scholar 

  76. Sudarshan, E.: Equivalence of semiclassical and quantum mechanical descriptions of statistical light beams. Phys. Rev. Lett. 10(7), 277 (1963)

    ADS  MathSciNet  MATH  Google Scholar 

  77. Glauber, R.J.: The quantum theory of optical coherence. Phys. Rev. 130(6), 2529 (1963)

    ADS  MathSciNet  Google Scholar 

  78. Loudon, R.: The Quantum Theory of Light. OUP, Oxford (2000)

    MATH  Google Scholar 

  79. Mandel, L.: Sub-poissonian photon statistics in resonance fluorescence. Opt. Lett. 4(7), 205–207 (1979)

    ADS  Google Scholar 

  80. Benedict, M.G., Czirják, A.: Wigner functions, squeezing properties, and slow decoherence of a mesoscopic superposition of two-level atoms. Phys. Rev. A 60, 4034–4044 (1999)

    ADS  Google Scholar 

  81. Lee, C.T.: Measure of the nonclassicality of nonclassical states. Phys. Rev. A 44, R2775–R2778 (1991)

    ADS  MathSciNet  Google Scholar 

Download references

Acknowledgements

The author would like to thank CSIR for the fellowship support. SB acknowledges support from Interdisciplinary Cyber Physical Systems (ICPS) programme of the Department of Science and Technology (DST), India, Grant No.:DST/ICPS/QuST/Theme-1/2019/6. SB also acknowledges support from the Interdisciplinary Research Platform (IDRP) on Quantum Information and Computation (QIC) at IIT Jodhpur.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ramniwas Meena.

Ethics declarations

Conflict of Interest

The authors declare no conflicts of interest related to this research.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix

Appendix A: Normalization constant

For any density, we have the following,

$$\begin{aligned} \textrm{Tr}[{\hat{\rho }}]=1. \end{aligned}$$

1.1 For PATS

$$\begin{aligned} N_m= & {} {\textrm{Tr}\left[ :{\hat{a}}^{\dag m} e^{-A{\hat{a}}^\dag {\hat{a}}}{\hat{a}}^m:\right] }=\int {\left\langle \alpha \big |\right. :{\hat{a}}^{\dag m} {e^{-A{\hat{a}}^{\dag }{\hat{a}}}}{\hat{a}}^{m}:\big |\left. \alpha \right\rangle }\frac{d^{2}\alpha }{\pi }\\= & {} \int {(\alpha \alpha ^{*})^{m} e^{-A|\alpha |^2}}\frac{d^{2}\alpha }{\pi }, \end{aligned}$$

let \(\alpha =x+\iota y \), \(\alpha \alpha ^{*}=x^2+y^2=r^2\) and \(d^{2}\alpha =r d r d\theta \), now we have,

$$\begin{aligned} N_m=\int {r^{2m+1}e^{-A r^{2}}{}{d r} d\theta =m!/A^{(m+1)}}. \end{aligned}$$
figure b

1.2 For PSTS

$$\begin{aligned} N_{m^-}=\textrm{Tr}\left[ \int {\frac{d^2 \alpha }{\pi }{(\alpha ^{*}\alpha )^m} e^{-\frac{|\alpha |^2}{n_{\textrm{th}}}}\big |\alpha \rangle \langle \alpha \big |}\right] =\int {\frac{d^2 \alpha }{\pi }{(\alpha ^{*}\alpha )^m}e^{-\frac{|\alpha |^2}{n_{\textrm{th}}}}}=m!{(n_{\textrm{th}})}^{\left( m+1\right) }. \end{aligned}$$

1.3 For PAKFTS

$$\begin{aligned} N_{\text {km}}&= \text {Tr}\bigg [ :{{{\hat{a}}}^{\dag m}e^{- A{{\hat{a}}}^{\dag }{\hat{a}}}{\hat{a}}}^{m}: -\frac{e^{- \beta \hbar \omega k}}{k!}:{{{\hat{a}}}^{\dag (m + k)}e}^{- {{\hat{a}}}^{\dag }{\hat{a}}}{{\hat{a}}}^{(m + k)}: \bigg ]\\&= \int {\frac{d^{2}\alpha }{\pi }\langle \alpha | :{{{\hat{a}}}^{\dag m}e^{- A{{\hat{a}}}^{\dag }{\hat{a}}}{\hat{a}}}^{m}: - \frac{e^{- \beta \hbar \omega k}}{k!}:{{{\hat{a}}}^{\dag (m + k)}e}^{- {{\hat{a}}}^{\dag }{\hat{a}}}{{\hat{a}}}^{(m + k)}:|\alpha \rangle } \\&= \int {\frac{d^{2}\alpha }{\pi }\langle \alpha | :{{{\hat{a}}}^{\dag m}e^{- A{{\hat{a}}}^{\dag }{\hat{a}}}{\hat{a}}}^{m}:|\alpha \rangle }\\&\quad - \frac{e^{- \beta \hbar \omega k}}{k!}\int {\frac{d^{2}\alpha }{\pi }\langle \alpha |:{{{\hat{a}}}^{\dag (m + k)}e}^{- {{\hat{a}}}^{\dag }{\hat{a}}}{{\hat{a}}}^{(m + k)}:|\alpha \rangle }. \end{aligned}$$

We have,

$$\begin{aligned} \int {\frac{d^{2}\alpha }{\pi }\langle \alpha |:{{{\hat{a}}}^{\dag m}e^{- A{{\hat{a}}}^{\dag }{\hat{a}}}{\hat{a}}}^{m}:|\alpha \rangle } = \int {\frac{d^{2}\alpha }{\pi }\left( \alpha \alpha ^{*} \right) ^{m}}e^{- A|\alpha |^{2}} = \frac{m!}{A^{m + 1}}, \end{aligned}$$

using the above equation we can get following expression of normalization constant For PAKFTS-

$$\begin{aligned} N_{k m}=\frac{m!}{A^{m+1}}-\frac{e^{- \beta \hbar \omega k}}{k!} (m+k)!. \end{aligned}$$
(A.1)

1.4 For PASTS

We have \(\textrm{tr}({\hat{\rho }}_{\textrm{PASTS}})=1.\)

$$\begin{aligned} N_{a,m}&=\frac{1}{\sqrt{A}}\int \langle \alpha \big |:{\hat{a}}^{\dag m}\exp {\left[ \frac{C}{2}({\hat{a}}^{\dag 2}+{{\hat{a}}}^2)+(B-1){{\hat{a}}}^\dag {\hat{a}}\right] } {\hat{a}}^{m}:\big |\alpha \rangle \frac{d^2\alpha }{\pi }\\&=\frac{1}{\sqrt{A}}\int (\alpha ^*\alpha )^{m}\exp {\left[ \frac{C}{2}(\alpha ^{*2}+{\alpha }^2)+(B-1){\alpha }^{*}\alpha \right] } \frac{d^2\alpha }{\pi }\\&\quad =\frac{1}{\sqrt{A}}\partial _{v}^{m}\int \exp {\left[ \frac{C}{2}(\alpha ^{*2}+{\alpha }^2)+v{\alpha }^{*}\alpha \right] } \frac{d^2\alpha }{\pi }\bigg |_{v=B}. \end{aligned}$$

Now, using Eq. (4.4)

$$\begin{aligned} N_{a,m}=\frac{1}{\sqrt{A}}\partial _{v}^{m}\left[ (v^2-C^2)^{-1/2}\right] \bigg |_{v=B}. \end{aligned}$$
(A.2)

1.5 For PSSTS

We have \(\textrm{Tr}({\hat{\rho }}_{\textrm{PSSTS}})=1.\)

$$\begin{aligned} N_{a,m^{-}}&=\textrm{Tr}\bigg [\frac{1}{\sqrt{A}}\int \int \frac{d^2\alpha }{\pi }\frac{d^2\beta }{\pi }(\beta ^*\alpha )^m\\&\quad \times \exp {\left[ \frac{C}{2}(\alpha ^{*2}+{\beta }^2)+B\alpha ^*\beta -\frac{|\alpha |^2+|\beta |^2}{2}\right] }{|\alpha \rangle \langle \beta |}\bigg ]\\&=\frac{1}{\sqrt{A}}\int \int \frac{d^2\alpha }{\pi }\frac{d^2\beta }{\pi }(\beta ^*\alpha )^m\\&\quad \times \exp {\left[ \frac{C}{2}(\alpha ^{*2}+{\beta }^2)+B\alpha ^*\beta -\frac{|\alpha |^2+|\beta |^2}{2}\right] } {\langle \beta |\alpha \rangle }\\&= \frac{1}{\sqrt{A}}\int \int \frac{d^2\alpha }{\pi }\frac{d^2\beta }{\pi }(\beta ^*\alpha )^m\\&\quad \times \exp {\left[ \frac{C}{2}(\alpha ^{*2}+{\beta }^2)+B\alpha ^*\beta +\alpha \beta ^*-{|\alpha |^2-|\beta |^2}\right] }\\&=\frac{1}{\sqrt{A}}\partial _{u}^{m}\int \int \frac{d^2\alpha }{\pi }\frac{d^2\beta }{\pi }\\&\quad \times \exp {\left[ \frac{C}{2}(\alpha ^{*2}+{\beta }^2)+B\alpha ^*\beta +u \alpha \beta ^*-{|\alpha |^2-|\beta |^2}\right] }\bigg |_{u=1}\\&=\frac{1}{\sqrt{A}}\partial _{u}^{m}\int \frac{d^2\alpha }{\pi }\exp {\left[ \frac{C}{2}(\alpha ^{ *2}+u^2\alpha ^{ 2})-(1-Bu)|\alpha |^2\right] }\bigg |_{u=1}\\&=\frac{1}{\sqrt{A}}\partial _{u}^{m}\left[ (1-Bu)^2-C^2u^2\right] ^{-1/2}\bigg |_{u=1}. \end{aligned}$$

Appendix B: Characteristic function (CF)

1.1 CF For PASTS

$$\begin{aligned} \textrm{Tr}\left[ e^{\gamma {\hat{a}}^\dag }{\hat{\rho }} e^{-\gamma ^{*} {\hat{a}}}\right]&=\frac{N_{a,m}^{-1}}{\sqrt{A}}\int {\langle \alpha |}:\exp {\left( \gamma {\hat{a}}^\dag \right) }{\hat{a}}^{\dag m}\\&\quad \times \exp {\left[ \frac{C}{2}({\hat{a}}^{\dag 2}+{{\hat{a}}}^2)+(B-1){{\hat{a}}}^\dag {\hat{a}}\right] } {\hat{a}}^{m}\exp \left( -\gamma ^{*} {\hat{a}}\right) :{|\alpha \rangle }\frac{d^2\alpha }{\pi }\\&=\frac{N_{a,m}^{-1}}{\sqrt{A}}\int \left( \alpha ^*\alpha \right) ^{m}\\&\quad \times \exp {\left[ \frac{C}{2}(\alpha ^{*2}+\alpha ^{2})+(B-1) \alpha ^{*}\alpha +\gamma \alpha ^{*}-\gamma ^{*}\alpha \right] }\frac{d^2\alpha }{\pi }\\&=\frac{N_{a,m}^{-1}}{\sqrt{A}}\partial _X^{m}\int \exp {\left[ \frac{C}{2}(\alpha ^{*2}+\alpha ^{2})+X \alpha ^{*}\alpha +\gamma \alpha ^{*}-\gamma ^{*}\alpha \right] }\frac{d^2\alpha }{\pi }. \end{aligned}$$

Using Eq. (4.4)

$$\begin{aligned}{} & {} {\textrm{Tr}\left[ e^{\gamma {\hat{a}}^\dag }{\hat{\rho }} e^{-\gamma ^{*} {\hat{a}}}\right] } =\frac{N_{a,m}^{-1}}{\sqrt{A}}\partial _X^{m}\\{} & {} \quad \times \left[ {(X^2- C^2)}^{-1/2}\exp \left[ \frac{\frac{C}{2}({{\gamma }^{*}}^2+\gamma ^{2}) - X {\left| \gamma \right| ^{2}}}{(X^2-C^2)}\right] \right] , \end{aligned}$$

where \(X=(1-B)\).

Thus, the characteristic function for PASTS will be-

$$\begin{aligned}{} & {} \chi _{\textrm{in}}\left( \gamma ,\kappa \right) =\frac{N_{a,m}^{-1}}{\sqrt{A}}\partial _X^{m}\\{} & {} \quad \times \left[ {(X^2- C^2)}^{-1/2} \exp \left[ \frac{\frac{C}{2}({{\gamma }^{*}}^2+\gamma ^{2}) - X {\left| \gamma \right| ^{2}}}{(X^2-C^2)}+\frac{\kappa +1}{2}{|\gamma |}^2\right] \right] \end{aligned}$$

Similarly, for noisy PASTS at the output,

$$\begin{aligned}&\textrm{Tr}\left[ e^{\gamma {{\hat{a}}}^\dag }{\hat{\rho }} e^{-\gamma ^*{\hat{a}}}\right] =\frac{N_{a,m}^{-1}}{s \sqrt{A}}\partial _Y^m\\&\qquad \times \left[ \int \frac{d^2\alpha }{\pi }\left\langle \alpha \Bigg | e^{\gamma {{\hat{a}}}^\dag }:e^{-\frac{{{\hat{a}}}^\dag {\hat{a}}}{s}}\left( Y^2-C^2\right) ^{-1/2} \exp \left[ \frac{\frac{C}{2}\left( {{\hat{a}}}^{{\dag 2}}+{{\hat{a}}}^2\right) -Y{{\hat{a}}}^\dag {\hat{a}}}{s^2\left( Y^2-C^2\right) }\right] :e^{-\gamma ^*{\hat{a}}}\Bigg |\alpha \right\rangle \right] \\&\quad =\frac{N_{a,m}^{-1}}{s \sqrt{A}}\partial _Y^m\bigg [\left( Y^2-C^2\right) ^{-1/2}\int \frac{d^2z}{\pi }\\&\qquad \times \exp \left[ -\left( Y_{0}+1/s\right) \alpha ^*\alpha +\left( C_{0}/2\right) \left( {\alpha ^*}^2+\alpha ^2\right) +\gamma \alpha ^*-\gamma ^*\alpha \right] \bigg ], \end{aligned}$$

where \(Y_{0}=\frac{Y}{\left( Y^2-C^2\right) }\) and \(C_{0}=\frac{C}{\left( Y^2-C^2\right) }.\)

Using Eq. (4.4)

$$\begin{aligned} \textrm{Tr}\left[ e^{\gamma {{\hat{a}}}^\dag }{\hat{\rho }} e^{-\gamma ^*{\hat{a}}}\right]&=\frac{N_{a,m}^{-1}}{s \sqrt{A}}\partial _Y^m\bigg [\left( Y^2-C^2\right) ^{-1/2}\left( \left( Y_{0}+1/s\right) ^2-{C_{0}}^2\right) ^{-1/2}\\&\left. \quad \times \exp \left[ \frac{\frac{C_{0}}{2}\left( {\gamma ^*}^2+\gamma ^2\right) -\left( Y_{0}+1/s\right) \gamma ^*\gamma }{\left( \left( Y_{0}+1/s\right) ^2-{C_{0}}^2\right) }\right] \right] . \end{aligned}$$

After putting the value of trace in Eq. (5.3), we get the following expression for characteristic function for the output state of PASTS-

$$\begin{aligned}{} & {} \chi _{\textrm{out}}\left( \gamma .\kappa \right) =\frac{N_{a,m}^{-1}}{s \sqrt{A}}\partial _Y^{m}\left( Y^2-C^2\right) ^{-1/2}\left( \left( Y_{0}+1/s\right) ^2-{C_{0}}^2\right) ^{-1/2}\\{} & {} \quad \times \exp \left\{ \frac{\frac{C_{0}}{2}\left( {\gamma ^*}^2+\gamma ^2\right) }{\left( \left( Y_{0}+1/s\right) ^2-{C_{0}}^2\right) }-\left( \frac{\left( Y_{0}+1/s\right) }{\left( \left( Y_{0}+1/s\right) ^2-{C_{0}}^2\right) } -\frac{\beta +1}{2}\right) |\gamma |^2\right\} , \end{aligned}$$

Let we denote \(Y_{1}=\frac{\left( Y_{0}+1/s\right) }{\left( \left( Y_{0}+1/s\right) ^2-{C_{0}}^2\right) }\ -\frac{\kappa +1}{2}\), \(C_{1}=\frac{C_{0}}{\left( \left( Y_{0}+1/s\right) ^2-{C_{0}}^2\right) }.\)

$$\begin{aligned} \chi _{\textrm{out}}\left( \gamma ,\kappa \right)&=\frac{N_{a,m}^{-1}}{s \sqrt{A}}\partial _Y^{m} \bigg [\left( Y^2-C^2\right) ^{-1/2}\left( \left( Y_0+1/s\right) ^2-{C_0}^2\right) ^{-1/2}\nonumber \\&\left. \quad \times \exp \left[ \frac{C_{1}}{2}\left( {\gamma ^*}^2+\gamma ^2\right) -Y_1\gamma ^*\gamma \right] \right] . \end{aligned}$$
(A.3)

1.2 CF For PSSTS

$$\begin{aligned}&{\textrm{Tr}\left[ e^{-{{\gamma }^{*}}{\hat{a}}}{\hat{\rho }}e^{\gamma {\hat{a}}^{\dag }}\right] }=\textrm{Tr}\bigg [\frac{N_{a,m^{-}}^{-1}}{\sqrt{A}}\int \int \frac{d^{2}\alpha }{\pi }\frac{d^{2}\beta }{\pi }(\beta ^{*}\alpha )^{m}\\&\qquad \times \exp {\left[ \frac{C}{2}(\alpha ^{*2}+\beta ^{2})+B \alpha ^{*}\beta -\frac{|\alpha |^{2}+|\beta |^{2}}{2}\right] } e^{-\gamma ^{*} {\hat{a}}}|\alpha \rangle \langle \beta |e^{\gamma {\hat{a}}^{\dag }}\bigg ]\\&\quad =\frac{N_{a,m^{-}}^{-1}}{\sqrt{A}}\int \int \frac{d^2\alpha }{\pi }\frac{d^2\beta }{\pi }(\beta ^*\alpha )^m\\&\qquad \times \exp {\left[ \frac{C}{2}(\alpha ^{*2}+{\beta }^2)+B\alpha ^*\beta -\gamma ^*\alpha +\gamma \beta ^*-\frac{|\alpha |^2+|\beta |^2}{2}\right] }\langle \beta |\alpha \rangle \\&\quad =\frac{N_{a,m^{-}}^{-1}}{\sqrt{A}}\int \int \frac{d^2\alpha }{\pi }\frac{d^2\beta }{\pi }(\beta ^*\alpha )^m\\&\qquad \times \exp {\left[ \frac{C}{2}(\alpha ^{*2}+{\beta }^2)+B\alpha ^*\beta +\beta ^*\alpha -\gamma ^*\alpha +\gamma \beta ^*-{|\alpha |^2-|\beta |^2}\right] }\\&\quad =\frac{N_{a,m^{-}}^{-1}}{\sqrt{A}}\partial _{u}^{m}\int \int \frac{d^2\alpha }{\pi }\frac{d^2\beta }{\pi }\\&\qquad \times \exp {\left[ \frac{C}{2}(\alpha ^{*2}+{\beta }^2)+B\alpha ^*\beta +u \beta ^*\alpha -\gamma ^*\alpha +\gamma \beta ^*-{|\alpha |^2-|\beta |^2}\right] }\bigg |_{u=1}\\&\quad =\frac{N_{a,m^{-}}^{-1}}{\sqrt{A}}\partial _{u}^{m}\int \frac{d^2\alpha }{\pi }\exp {\left[ \frac{C}{2}(\alpha ^{*2})-\gamma ^*\alpha -{|\alpha |^2}\right] }\\&\qquad \times \exp {\big [B\alpha ^*(u \alpha +\gamma )+\frac{C}{2}(u\alpha +\gamma )^{2}\big ]}\bigg |_{u=1}\\&\quad =\frac{N_{a,m^{-}}^{-1}}{\sqrt{A}}\partial _{u}^{m}\int \frac{d^2\alpha }{\pi }\\&\qquad \times \exp {\bigg [\frac{C}{2}(\alpha ^{*2}+u^2\alpha ^2)-(1-Bu)|\alpha |^2-\alpha (\gamma ^*-\gamma C u)+B\gamma \alpha ^*+\frac{C}{2}\gamma ^2\bigg ]}\bigg |_{u=1}\\&\quad =\frac{N_{a,m^{-}}^{-1}}{\sqrt{A}}\partial _{u}^{m}\bigg [\left( (1-Bu)^2-C^2u^2\right) ^{-1/2}\\&\qquad \times \exp {\bigg [\frac{-(1-Bu)(\gamma ^*-\gamma C u)B \gamma +\frac{C}{2}((\gamma ^*-\gamma C u)^2+u^2 B^2\gamma ^2)}{(\left( 1-Bu)^2-C^2u^2\right) }+\frac{C}{2}\gamma ^2\bigg ]}\bigg ]\bigg |_{u=1}\\&\quad =\frac{N_{a,m^{-}}^{-1}}{\sqrt{A}}\partial _{u}^{m}\bigg [\left( (1-Bu)^2-C^2u^2\right) ^{-1/2}\\&\qquad \times \exp \bigg [\frac{\frac{C}{2}\gamma ^{*2}+\gamma ^{2}\left( \frac{C(u^2 B^2+C^2 u^2)}{2}+C u B(1-Bu)\right) -|\gamma |^2(B(1-Bu)+C^2 u)}{(\left( 1-Bu)^2-C^2u^2\right) }\\&\qquad +\frac{C}{2}\gamma ^2\bigg ]\bigg ]\bigg |_{u=1}. \end{aligned}$$

After putting the value of trace in Eq. (5.8), we get the following expression for characteristic function,

$$\begin{aligned} \chi _{\textrm{PSSTS}}\left( \gamma ,\kappa \right)&=\frac{N_{a,m^{-}}^{-1}}{\sqrt{A}}\partial _{u}^{m}\big [\left( (1-Bu)^2-C^2u^2\right) ^{-1/2}\nonumber \\&\quad \times \exp {\left( A_1\gamma ^{*2}+A_2\gamma ^{ 2}-A_3|\gamma |^2\right) }\big ]\bigg |_{u=1}, \end{aligned}$$
(A.4)

where \(A_1=\frac{\left( C/2\right) }{\left( (1-Bu)^2-C^2u^2\right) }\), \(A_2=\frac{\left( \frac{C(u^2 B^2+C^2 u^2)}{2}+B C u(1-Bu)\right) }{\left( (1-Bu)^2-C^2u^2\right) }+\frac{C}{2}\), \(A_3=\frac{(B(1-Bu)+C^2 u)}{\left( (1-Bu)^2-C^2u^2\right) }-\frac{\kappa -1}{2}.\)

Similarly, for noisy PSSTS at the output

$$\begin{aligned}&{\textrm{Tr}\left[ e^{-\gamma ^{*} {\hat{a}}}\phi _{s}({\hat{\rho }})e^{\gamma {\hat{a}}^\dag }\right] }=\textrm{Tr}\bigg [\frac{N_{a,m^{-}}^{-1}}{\sqrt{A}}\int \frac{d^2z}{s\pi }\frac{d^2\alpha }{\pi }\frac{d^2\beta }{\pi } (\beta ^*\alpha )^m\\&\qquad \times \exp {\left( -\gamma ^{*} {\hat{a}}\right) }\big |{\alpha +z}\rangle \langle {\beta +z}\big |\exp {\left( \gamma {\hat{a}}^\dag \right) }\\&\qquad \times \exp \left[ \frac{C}{2}(\alpha ^{*2}+{\beta }^2)+B\alpha ^*\beta +\frac{1}{2}\{z(\alpha ^*-\beta ^*) -z^*(\alpha -\beta )\}\right. \\&\qquad \left. -\frac{|\alpha |^2+|\beta |^2}{2}-\frac{|z|^2}{s}\right] \bigg ]\\&\quad =\frac{N_{a,m^{-}}^{-1}}{\sqrt{A}}\int \frac{d^2z}{s\pi }\frac{d^2\alpha }{\pi }\frac{d^2\beta }{\pi } (\beta ^*\alpha )^m \langle {\beta +z}\big |{\alpha +z}\rangle \\&\qquad \times \exp \left[ \frac{C}{2}(\alpha ^{*2}+{\beta }^2)+B\alpha ^*\beta +\frac{1}{2}\{(z(\alpha ^*-\beta ^*)-z^*(\alpha -\beta ))\}\right. \\&\qquad \left. +\gamma (z^*+\beta ^*) -\gamma ^*(z+\alpha )-\frac{|\alpha |^2+|\beta |^2}{2}-\frac{|z|^2}{s}\right] , \end{aligned}$$

one can have,

$$\begin{aligned}&\langle {\beta +z}|{\alpha +z}\rangle =\exp {\bigg [-\frac{|\alpha +z|^2}{2}-\frac{|\beta +z|^2}{2}+(\beta ^{*}+z^*)(\alpha +z)\bigg ]}\\&\quad =\exp \bigg [-\frac{|\alpha |^2+|z|^2+\alpha z^*+z \alpha ^*}{2}-\frac{|\beta |^2+|z|^2+\beta z^*+z \beta ^*}{2}\\&\qquad +(\beta ^{*}\alpha +\beta ^{*}z+z^*\alpha +|z|^2)\bigg ]\\&\quad =\exp \left[ -\frac{|\alpha |^2}{2}-\frac{|\beta |^2}{2} -\frac{1}{2}\{z(\alpha ^*-\beta ^*)-z^*(\alpha -\beta )\}+\beta ^*\alpha \right] .\\&{\textrm{Tr}\left[ e^{-\gamma ^{*} {\hat{a}}}\phi _{s}({\hat{\rho }})e^{\gamma {\hat{a}}^\dag }\right] }=\frac{N_{a,m^{-}}^{-1}}{\sqrt{A}}\int \frac{d^2z}{s\pi }\frac{d^2\alpha }{\pi }\frac{d^2\beta }{\pi } (\beta ^*\alpha )^m\\&\qquad \times \exp \left[ \frac{C}{2}(\alpha ^{*2}+{\beta }^2)+B\alpha ^*\beta +\beta ^*\alpha -z\gamma ^*\right. \\&\qquad \left. +z^*\gamma +\gamma \beta ^*-\gamma ^*\alpha -|\alpha |^2-|\beta |^2-\frac{|z|^2}{s}\right] \\&\quad =\frac{N_{a,m^{-}}^{-1}}{\sqrt{A}}\int \frac{d^2\alpha }{\pi }\frac{d^2\beta }{\pi } (\beta ^*\alpha )^m\exp \bigg [\frac{C}{2}(\alpha ^{*2}+{\beta }^2)+B\alpha ^*\beta \\&\qquad +\beta ^*\alpha +\gamma \beta ^*-\gamma ^*\alpha -|\alpha |^2-|\beta |^2-{s}{|\gamma |^2}\bigg ]\\&\quad =\frac{N_{a,m^{-}}^{-1}}{\sqrt{A}}\int \int \frac{d^2\alpha }{\pi }\frac{d^2\beta }{\pi }(\beta ^*\alpha )^m\exp \bigg [\frac{C}{2}(\alpha ^{*2}+{\beta }^2)+B\alpha ^*\beta \\&\qquad +\beta ^*\alpha -\gamma ^*\alpha +\gamma \beta ^*-{|\alpha |^2-|\beta |^2}-{s}{|\gamma |^2}\bigg ]\\&\quad =\frac{N_{a,m^{-}}^{-1}}{\sqrt{A}}\partial _{u}^{m}\int \int \frac{d^2\alpha }{\pi }\frac{d^2\beta }{\pi }\\&\qquad \times \exp \left[ \frac{C}{2}(\alpha ^{*2}+{\beta }^2)+B\alpha ^*\beta +u \beta ^*\alpha -\gamma ^*\alpha +\gamma \beta ^*-{|\alpha |^2-|\beta |^2}-{s}{|\gamma |^2}\right] \bigg |_{u=1}\\&\quad =\frac{N_{a,m^{-}}^{-1}}{\sqrt{A}}\partial _{u}^{m}\int \frac{d^2\alpha }{\pi }\exp {\left[ \frac{C}{2}(\alpha ^{*2})-\gamma ^*\alpha -{|\alpha |^2}\right] }\\&\qquad \times \exp {\bigg [B\alpha ^*(u \alpha +\gamma )+\frac{C}{2}(u\alpha +\gamma )^{2}-{s}{|\gamma |^2}\bigg ]}\bigg |_{u=1}\\&\quad =\frac{N_{a,m^{-}}^{-1}}{\sqrt{A}}\partial _{u}^{m}\bigg [\int \frac{d^2\alpha }{\pi }\exp \bigg [\frac{C}{2}(\alpha ^{*2}+u^2\alpha ^2)-(1-Bu)|\alpha |^2-\alpha (\gamma ^*-\gamma C u)\\&\qquad +B\gamma \alpha ^*+\frac{C}{2}\gamma ^2-{s}{|\gamma |^2}\bigg ]\bigg ]\bigg |_{u=1}\\&\quad =\frac{N_{a,m^{-}}^{-1}}{\sqrt{A}}\partial _{u}^{m}\left( (1-Bu)^2-C^2u^2\right) ^{-\frac{1}{2}}\\&\qquad \times \exp \bigg [\frac{-(1-Bu)(\gamma ^*-\gamma C u)B \gamma +\frac{C}{2}((\gamma ^*-\gamma C u)^2+u^2 B^2\gamma ^2)}{(\left( 1-Bu)^2-C^2u^2\right) }\\&\qquad +\frac{C}{2}\gamma ^2-{s}{|\gamma |^2}\bigg ]\bigg |_{u=1}\\&\quad =\frac{N_{a,m^{-}}^{-1}}{\sqrt{A}}\partial _{u}^{m}\bigg [\left( (1-Bu)^2-C^2u^2\right) ^{-1/2}\\&\qquad \times \exp \bigg [\frac{\frac{C}{2}\gamma ^{*2}+\gamma ^{2}\left( \frac{C(u^2 B^2+C^2 u^2)}{2}+C u B(1-Bu)\right) -|\gamma |^2(B(1-Bu)+C^2 u)}{(\left( 1-Bu)^2-C^2u^2\right) }\\&\qquad +\frac{C}{2}\gamma ^2-{s}{|\gamma |^2}\bigg ]\bigg ]\bigg |_{u=1}\\&\quad =\frac{N_{a,m^{-}}^{-1}}{\sqrt{A}}\partial _{u}^{m}\bigg [\left( (1-Bu)^2-C^2u^2\right) ^{-1/2}\exp {\left( N_1\gamma ^{*2}+N_2\gamma ^{ 2}-N_3|\gamma |^2\right) }\bigg ]\bigg |_{u=1}, \end{aligned}$$

where \(N_1=\frac{\left( {C/2}\right) }{\left( (1-Bu)^2-C^2u^2\right) },N_2=\frac{\left( \frac{C(u^2 B^2+C^2 u^2)}{2}+B C u(1-Bu)\right) }{\left( (1-Bu)^2-C^2u^2\right) }+\frac{C}{2},N_3=\frac{(B(1-Bu)+C^2 u)}{\left( (1-Bu)^2-C^2u^2\right) }+s\).

After putting the value of trace in Eq. (5.8). we get following expression for characteristic function

$$\begin{aligned} \chi \left( \gamma ,\kappa \right)&=\frac{N_{a,m^{-}}^{-1}}{\sqrt{A}}\partial _{u}^{m}\bigg [\left( (1-Bu)^2-C^2u^2\right) ^{-1/2}\nonumber \\&\quad \times \exp {\bigg [-\left( N_1-\frac{(\kappa -1)}{2}\right) |\gamma |^2+N_2\gamma ^2+N_3\gamma ^{*2}\bigg ]}\bigg ]\bigg |_{u=1}. \end{aligned}$$
(A.5)

Appendix C: \(r^{\textrm{th}}\) moment for input and output states

For the derivation of \(r^{\textrm{th}}\) moment for input and output states, we consider the following

$$\begin{aligned} \left\langle {\hat{a}}^{\dag r}{\hat{a}}^r\right\rangle =\textrm{Tr}\left[ {\hat{\rho }}{\hat{a}}^{\dag r}{\hat{a}}^r\right] . \end{aligned}$$
(A.6)

1.1 For PATS

\(r^{\textrm{th}}\)-moment of PATS can be find using Eq. (A.6),

$$\begin{aligned} \langle {n}|{\hat{a}}^r{\hat{\rho }}{\hat{a}}^{\dag r}|n\rangle&=N_{m}^{-1}\langle {n}|{\hat{a}}^r:{\hat{a}}^{\dag m} e^{-A{\hat{a}}^\dag {\hat{a}}}{\hat{a}}^{m}:{\hat{a}}^{\dag r}|n\rangle \\&=N_{m}^{-1}\frac{(n+r)!}{n!}\langle {n+r}|:{\hat{a}}^{\dag m} e^{-A{\hat{a}}^\dag {\hat{a}}}{\hat{a}}^{ m}:|n+r\rangle \\&=N_{m}^{-1}\frac{(n+r)!}{n!}\sum _{l=0}{\frac{(n+r)!}{(n+r-m)!}}\langle {n+r-m}|: (-A)^{l}\frac{{\hat{a}}^{\dag k}{\hat{a}}^{l}}{l!}:|n+r-m\rangle \\&=N_{m}^{-1}\frac{(n+r)!}{n!}\sum _{l=0}{\frac{(n+r)!}{(n+r-m)!}}\frac{(-A)^{l}(n+r-m)}{l!\,(n+r-m-l)}\\&=N_{m}^{-1}\frac{(n+r)!}{n!}{\frac{(n+r)!}{(n+r-m)!}}(1-A)^{n+r-m}. \end{aligned}$$

Thus, one can see,

$$\begin{aligned} \langle {\hat{a}}^{\dag r}{\hat{a}}^r\rangle&=\textrm{Tr}\left[ {\hat{\rho }}{\hat{a}}^{\dag r}{\hat{a}}^r\right] =\sum _{n=0}^{\infty }\langle {n}|{\hat{a}}^r{\hat{\rho }}{\hat{a}}^{\dag r}|n \rangle \nonumber \\&=N_{m}^{-1} {\sum _{n=0}^{\infty } {\frac{\left( n+r\right) !^2}{n!\left( n+r-m\right) !} \left( 1-A\right) ^{n+r-m}}}. \end{aligned}$$
(A.7)

Similarly, for noisy PATS at the output,

$$\begin{aligned} \langle {\hat{a}}^{\dag r}{\hat{a}}^{r}\rangle&=\textrm{Tr}\left[ {{\Phi }_s\left( {\hat{\rho }}_{\textrm{PATS}}\right) }{\hat{a}}^{\dag r}{\hat{a}}^r\right] =\sum _{n=0}\langle {n}|{\hat{a}}^r{\Phi }_s\left( {\hat{\rho }}_{\textrm{PATS}}\right) {\hat{a}}^{\dag r}|n \rangle \\&=N_{m}^{-1}:\sum _{l=0}^{m}\frac{{m!}^2 (n+r)! \langle {n+r}|\left( {{\hat{a}}}^\dag \right) ^{m-l}\exp \left( -\frac{A{{\hat{a}}}^{\dag }{\hat{a}}}{As+1}\right) \left( {\hat{a}}\right) ^{m-l}|{n+r}\rangle s^l}{n!\,l!\,{\left( m-l\right) !)}^2\left( As+1\right) ^{2m-l+1}}: , \end{aligned}$$

we get the following (making use of Eq. (6.3)),

$$\begin{aligned} \langle {\hat{a}}^{\dag r}{\hat{a}}^{r}\rangle&=\textrm{Tr}\left[ \phi _s({\hat{\rho }}){\hat{a}}^{\dag r}{\hat{a}}^{r}\right] \nonumber \\&=N_{m}^{-1} \sum _{l=0}^{m} \frac{{m!}^{2} s^{l}}{l!{\left( m-l\right) !)}^{2}\left( As+1\right) ^{2m-l+1}}\sum _{n=0}{\frac{\left( n+r\right) !^{2}}{n!\left( n+r-m+l\right) !}}\nonumber \\&\quad \times \left( 1-\frac{A}{As+1}\right) ^{n+r-m+l} . \end{aligned}$$
(A.8)

1.2 For PSTS

For \(r^{\textrm{th}}\) moment

$$\begin{aligned} \langle {\hat{a}}^{\dag r}{\hat{a}}^r\rangle&=\textrm{Tr}[{\hat{a}}^{\dag r}{\hat{a}}^r{\hat{\rho }}_{\textrm{PSTS}}]=N_{m^-}^{-1}\textrm{Tr}\bigg [\int {\frac{d^2 \alpha }{\pi }{(\alpha ^{*}\alpha )^m}e^{-\frac{|\alpha |^2}{n_{\textrm{th}}}}{\hat{a}}^{\dag r}{\hat{a}}^r\big |\alpha \rangle \langle \alpha |\bigg ]}\nonumber \\&=N_{m^-}^{-1}\int {\frac{d^2 \alpha }{\pi }{(\alpha ^{*}\alpha )^{m+r}}e^{-\frac{|\alpha |^2}{n_{\textrm{th}}}}}=N_{m^-}^{-1} (m+r)! (n_{\textrm{th}})^{m+r+1}. \end{aligned}$$
(A.9)

Similarly for noisy PSTS at the output, for \(r^{\textrm{th}}\) moment

$$\begin{aligned} \left\langle {\hat{a}}^{\dag r}{\hat{a}}^r\right\rangle&=\textrm{Tr}[{\hat{a}}^{\dag r}{\hat{a}}^r\phi _{s}({\hat{\rho }})]\nonumber \\&=N_{m^-}^{-1}\textrm{Tr}\bigg [\int \int {\frac{d^2 \alpha }{\pi }\frac{d^2 z}{\pi s}{(\alpha ^{*}\alpha )^m}\exp {\bigg \{-\frac{|\alpha |^2}{n_{\textrm{th}}}-\frac{|z|^2}{s}\bigg \}}{\hat{a}}^r|\alpha +z\rangle \langle \alpha +z|{\hat{a}}^{\dag r}}\bigg ]\nonumber \\&=N_{m^-}^{-1}\int \int {\frac{d^2 \alpha }{\pi }\frac{d^2 z}{\pi s}{(\alpha ^{*}\alpha )^m}{|\alpha +z|^{2r}}\exp {\bigg [-\frac{|\alpha |^2}{n_{\textrm{th}}}-\frac{|z|^2}{s}\bigg ]}\langle \alpha +z|\alpha +z\rangle }\nonumber \\&=N_{m^-}^{-1}\partial _{u}^{r}\int \int {\frac{d^2 \alpha }{\pi }\frac{d^2 z}{\pi s}{(\alpha ^{*}\alpha )^m}\exp {\bigg [-\frac{|\alpha |^2}{n_{\textrm{th}}}-\frac{|z|^2}{s}+u|\alpha +z|^2\bigg ]}}\bigg |_{u=0}\nonumber \\&=N_{m^-}^{-1}\partial _{u}^{r}\int \int \frac{d^2 \alpha }{\pi }\frac{d^2 z}{\pi s}{(\alpha ^{*}\alpha )^m}\exp \bigg [-(1/n_{\textrm{th}}-u)|\alpha |^2-\left( \frac{1}{s}-u\right) |z|^2\nonumber \\&\quad +u(z\alpha ^{*}+z^*\alpha )\bigg ] \bigg |_{u=0}\nonumber \\&=N_{m^-}^{-1}\partial _{u}^{r}\left[ \frac{1}{\left( \frac{1}{s}-u\right) s}\int {\frac{d^2 \alpha }{\pi }{(\alpha ^{*}\alpha )^m}\exp {\bigg [-\left( \frac{1}{n_{\textrm{th}}}-u-\frac{u^2}{\frac{1}{s}-u}\right) |\alpha |^2\bigg ]}}\right] \bigg |_{u=0}\nonumber \\&=N_{m^-}^{-1}\partial _{u}^{r}\left[ \frac{1}{\left( \frac{1}{s}-u\right) s}\frac{m!}{\left( \frac{1}{n_{\textrm{th}}}-u-\frac{u^2}{\frac{1}{s}-u}\right) ^{m+1}}\right] \bigg |_{u=0}. \end{aligned}$$
(A.10)

1.3 For PAKFTS

We have density operator for PAKFTS

$$\begin{aligned} {\hat{\rho }}_{\text {PAKFT}} = N_{\text {km}}^{- 1}\left[ :{{{\hat{a}}}^{\dag m}e^{- A{{\hat{a}}}^{\dag }{\hat{a}}}{\hat{a}}}^{m}: - \frac{e^{- \beta \hbar \omega k}}{k!}:{{{\hat{a}}}^{\dag (m + k)}e}^{- {{\hat{a}}}^{\dag }{\hat{a}}}{{\hat{a}}}^{(m + k)}: \right] , \end{aligned}$$

using the above and Eq. (A.6), \(r^{\textrm{th}}\) moment-

$$\begin{aligned} \left\langle {{{\hat{a}}}^{\dag r}{\hat{a}}^{r}} \right\rangle&= N_{\text {km}}^{- 1}\, \text {Tr}\left[{{{\hat{a}}}^{r}:{{{\hat{a}}}^{\dag m}e^{- A{{\hat{a}}}^{\dag }{\hat{a}}}{\hat{a}}}^{m}:{\hat{a}}}^{\dag r} \right]\nonumber \\&\quad - N_{\text {km}}^{- 1}\ \frac{e^{- \beta \hbar \omega k}}{k!} \text {Tr}\left[{{{\hat{a}}}^{r}:{{{\hat{a}}}^{\dag (m + k)}e}^{- {{\hat{a}}}^{\dag }{\hat{a}}}{{\hat{a}}}^{(m + k)}:{\hat{a}}}^{\dag r} \right]\end{aligned}$$
(A.11)
$$\begin{aligned}&= N_{\text {km}}^{- 1}\sum _{n = 0}^{}\left[ \frac{{((n + r)!)}^{2}}{n!(n + r - m)!}(1 - A)^{n + r - m} \right. \nonumber \\&\left. \quad - \frac{e^{- \beta \hbar \omega k}}{k!}\frac{{((n + r)!)}^{2}}{n!\ (n + r - m - k)!}\left| \left\langle n + r - m - k \Bigg | 0 \right\rangle \right| ^{2} \right] . \end{aligned}$$
(A.12)

Similarly, for noisy PAKFTS the output,

$$\begin{aligned} \left\langle {{{\hat{a}}}^{\dag r}{\hat{a}}^{r}} \right\rangle&= N_{\text {km}}^{- 1}\sum _{n = 0}\left[ \sum _{l = 0}^{m}\frac{{m!}^{2}{{((n + r)!)}^{2}s}^{l}}{l!\,n!\,((m - l)!)^{2}\,(n + r - m + l)!\left( \text {As} + 1 \right) ^{2m - l + 1}}\right. \nonumber \\&\quad \times \left( \frac{\text {As} -A + 1}{\text {As} + 1} \right) ^{n + r - m +l} - \frac{e^{- \beta \hbar \omega k}}{k!}\sum _{l = 0}^{m + k}\nonumber \\&\quad \times \frac{{(m + k)!}^{2}{((n + r)!)}^{2}s^{l}}{l!\,n!\,((m + k - l)!)^{2}(n + r - m - k + l)!(s + 1)^{2(m + k) - l + 1}}\nonumber \\&\left. \quad \times \left( \frac{s}{s + 1} \right) ^{n + r - m - k + l} \right] . \end{aligned}$$
(A.13)

1.4 For PASTS

For \(r^{\textrm{th}}\) moment,

$$\begin{aligned} \left\langle {\hat{a}}^{\dag r}{\hat{a}}^{r}\right\rangle&=\textrm{Tr}{\left[ {\hat{a}}^{\dag r}{\hat{a}}^{r}{\hat{\rho }}_{\textrm{PASTS}}\right] }\nonumber \\&=\frac{N_{a,m}^{-1}}{\sqrt{A}}\textrm{Tr}\bigg [\int \int \frac{d^2\alpha }{\pi }\frac{d^2\beta }{\pi }(\alpha ^*\beta )^{ m}\nonumber \\&\quad \times \exp {\left[ \frac{C}{2}(\alpha ^{*2}+\beta ^2)+B\alpha ^*\beta -\frac{|\alpha |^2}{2}-\frac{|\beta |^2}{2}\right] }{\hat{a}}^{\dag r}{\hat{a}}^r|\alpha \rangle \langle \beta |\bigg ] \nonumber \\&=\frac{N_{a,m}^{-1}}{\sqrt{A}}\int \int \frac{d^2\alpha }{\pi }\frac{d^2\beta }{\pi }(\alpha ^*\beta )^{ m}\nonumber \\&\quad \times \exp {\left[ \frac{C}{2}(\alpha ^{*2}+\beta ^2)+B\alpha ^*\beta -\frac{|\alpha |^2}{2}-\frac{|\beta |^2}{2}\right] }\langle \beta |{\hat{a}}^{\dag r}{\hat{a}}^r|\alpha \rangle \nonumber \\&=\frac{N_{a,m}^{-1}}{\sqrt{A}}\int \int \frac{d^2\alpha }{\pi }\frac{d^2\beta }{\pi }(\alpha ^*\beta )^{m}(\alpha \beta ^*)^{r}\nonumber \\&\quad \times \exp {\left[ \frac{C}{2}(\alpha ^{*2}+\beta ^2)+B\alpha ^*\beta +\alpha \beta ^*-|\alpha |^2-|\beta |^2\right] }\nonumber \\&=\frac{N_{a,m}^{-1}}{\sqrt{A}}\partial _{x}^{m}\partial _{u}^{r}\int \int \frac{d^2\alpha }{\pi }\frac{d^2\beta }{\pi }\nonumber \\&\quad \times \exp {\left[ \frac{C}{2}(\alpha ^{*2}+\beta ^2)+x\alpha ^*\beta +u\alpha \beta ^*-|\alpha |^2-|\beta |^2\right] }\bigg |_{x=B, u=1}\nonumber \\&=\frac{N_{a,m}^{-1}}{\sqrt{A}}\partial _{x}^{m}\partial _{u}^{r}\int \frac{d^2\alpha }{\pi }\exp {\left[ \frac{C}{2}\alpha ^{*2}-|\alpha |^2+( x u |\alpha |^{2}+\frac{C}{2}u^2\alpha ^2)\right] }\bigg |_{x=B, u=1}\nonumber \\&=\frac{N_{a,m}^{-1}}{\sqrt{A}}\partial _{x}^{m}\partial _{u}^{r}\int \frac{d^2\alpha }{\pi }\exp {\left[ \frac{C}{2}(\alpha ^{*2}+u^2\alpha ^2)-|\alpha |^2(1-x u)\right] }\bigg |_{x=B, u=1}\nonumber \\&=\frac{N_{a,m}^{-1}}{\sqrt{A}}\partial _{x}^{m}\partial _{u}^{r}\left[ (1-x u)^2-C^2u^2\right] ^{-1/2}\bigg |_{x=B, u=1} . \end{aligned}$$
(A.14)

Similarly, for noisy PASTS at the output,

$$\begin{aligned} \left\langle {\hat{a}}^{\dag r}{\hat{a}}^{r}\right\rangle&=\textrm{tr}{\left[ {\hat{a}}^{\dag k}{\hat{a}}^{r}\phi _s({\hat{\rho }})\right] }\nonumber \\&=\frac{N_{a,m}^{-1}}{s\sqrt{A}}\textrm{Tr}\bigg [\int \int \frac{d^2\alpha }{\pi }\frac{d^2\beta }{\pi }\partial _Y^{m}\nonumber \\&\quad \times \left[ {(Y^2- C^2)}^{-1/2} \exp \left[ \frac{C_0}{2}({{\alpha }^{*2}}+\beta ^2) - (Y_0-1+1/s) {\alpha ^*\beta }\right. \right. \nonumber \\&\quad \left. \left. -\frac{|\alpha |^2+|\beta |^2}{2}\right] \right] {{\hat{a}}^{\dag r}{\hat{a}}^{r}}|\alpha \rangle \langle \beta |\bigg ]\nonumber \\&=\frac{N_{a,m}^{-1}}{s\sqrt{A}}\int \int \frac{d^2\alpha }{\pi }\frac{d^2\beta }{\pi }\partial _Y^{m}\nonumber \\&\quad \times \left[ {(Y^2- C^2)}^{-1/2} \exp \left[ \frac{C_0}{2}({{\alpha }^{*2}}+\beta ^2) - (Y_0-1+1/s) {\alpha ^*\beta }\right. \right. \nonumber \\&\quad \left. \left. -\frac{|\alpha |^2+|\beta |^2}{2}\right] \right] \langle \beta |{\hat{a}}^{\dag r}{\hat{a}}^r|\alpha \rangle \nonumber \\&=\frac{N_{a,m}^{-1}}{s\sqrt{A}} \int \int \frac{d^2\alpha }{\pi }\frac{d^2\beta }{\pi }\partial _Y^{m}\left[ {(Y^2- C^2)}^{-1/2}(\alpha \beta ^*)^r \right. \nonumber \\&\quad \times \left. \exp \left[ \frac{C_0}{2}({{\alpha }^{*2}}+\beta ^2) - \left( Y_0-1+\frac{1}{s}\right) {\alpha ^*\beta }+\alpha \beta ^*-{|\alpha |^2-|\beta |^2}\right] \right] \nonumber \\&=\frac{N_{a,m}^{-1}}{s\sqrt{A}}\int \int \frac{d^2\alpha }{\pi }\frac{d^2\beta }{\pi }\partial _Y^{m}\partial _{u}^{r}\nonumber \\&\quad \times \left[ {(Y^2- C^2)}^{-1/2} \exp \left[ \frac{C_0}{2}({{\alpha }^{*2}}+\beta ^2) - \left( Y_0-1+\frac{1}{s}\right) \right. \right. \nonumber \\&\quad \times {\alpha ^*\beta }+u{\alpha \beta ^*}-{|\alpha |^2-|\beta |^2}\bigg ]\bigg ]\nonumber \\&=\frac{N_{a,m}^{-1}}{s\sqrt{A}}\int \frac{d^2\alpha }{\pi }\partial _Y^{m}\partial _{u}^{r}\left[ {(Y^2- C^2)}^{-1/2}\right. \nonumber \\&\quad \left. \times \exp \left[ \frac{C_0}{2}{{\alpha }^{*2}}+\frac{C_0}{2}u^2{{\alpha }^{*2}}-{\left( u\left( Y_0-1+\frac{1}{s}\right) +1\right) |\alpha |^2}\right] \right] \nonumber \\&=\frac{N_{a,m}^{-1}}{s\sqrt{A}}\partial _Y^{m}\partial _{u}^{r}\left[ {(Y^2- C^2)}^{-1/2}\left( \left( u\left( Y_0-1+\frac{1}{s}\right) +1\right) ^2-(C_{0}u)^2\right) ^{-1/2}\right] , \end{aligned}$$
(A.15)

where \(u=1\).

1.5 For PSSTS

For \(r^{\textrm{th}}\) moment,

$$\begin{aligned} \left\langle {\hat{a}}^{\dag r}{\hat{a}}^r\right\rangle&=\textrm{Tr}[{\hat{a}}^{\dag k}{\hat{a}}^k{\hat{\rho }}_{\textrm{PSSTS}}]\nonumber \\&=\textrm{Tr}\bigg [\frac{N_{a,m^{-}}^{-1}}{\sqrt{A}}\int \frac{d^2\alpha }{\pi }\frac{d^2\beta }{\pi }(\beta ^*\alpha )^m\nonumber \\&\quad \times \exp {\left[ \frac{C}{2}(\alpha ^{*2}+{\beta }^2)+B\alpha ^*\beta -\frac{|\alpha |^2+|\beta |^2}{2}\right] }{\hat{a}}^{\dag r}{\hat{a}}^r|\alpha \rangle \langle \beta |\bigg ]\nonumber \\&=\frac{N_{a,m^{-}}^{-1}}{\sqrt{A}}\int \frac{d^2\alpha }{\pi }\frac{d^2\beta }{\pi }(\beta ^*\alpha )^m\nonumber \\&\quad \times \exp {\left[ \frac{C}{2}(\alpha ^{*2}+{\beta }^2)+B\alpha ^*\beta -\frac{|\alpha |^2+|\beta |^2}{2}\right] }\langle \beta |{\hat{a}}^{\dag r}{\hat{a}}^r|\alpha \rangle \nonumber \\&=\frac{N_{a,m^{-}}^{-1}}{\sqrt{A}}\int \frac{d^2\alpha }{\pi }\frac{d^2\beta }{\pi }(\beta ^*\alpha )^{m+r}\nonumber \\&\quad \times \exp {\left[ \frac{C}{2}(\alpha ^{*2}+{\beta }^2)+B\alpha ^*\beta -\frac{|\alpha |^2+|\beta |^2}{2}\right] }\langle \beta |\alpha \rangle \nonumber \\&=\frac{N_{a,m^{-}}^{-1}}{\sqrt{A}}\int \frac{d^2\alpha }{\pi }\frac{d^2\beta }{\pi }(\beta ^*\alpha )^{m+r}\nonumber \\&\quad \times \exp {\left[ \frac{C}{2}(\alpha ^{*2}+{\beta }^2)+B\alpha ^*\beta +\alpha \beta ^*-{|\alpha |^2-|\beta |^2}\right] }\nonumber \\&=\frac{N_{a,m^{-}}^{-1}}{\sqrt{A}}\partial _v^{m+r}\int \frac{d^2\alpha }{\pi }\frac{d^2\beta }{\pi }\nonumber \\&\quad \times \exp {\left[ \frac{C}{2}(\alpha ^{*2}+{\beta }^2)+B\alpha ^*\beta +v\alpha \beta ^*-{|\alpha |^2-|\beta |^2}\right] } \bigg |_{v=1}\nonumber \\&=\frac{N_{a,m^{-}}^{-1}}{\sqrt{A}}\partial _v^{m+r}\int \frac{d^2\alpha }{\pi }\exp {\left[ \frac{C}{2}(\alpha ^{*2}+v^2\alpha ^2)-{(1-B v)|\alpha |^2}\right] }\bigg |_{v=1}.\nonumber \\&=\frac{N_{a,m^{-}}^{-1}}{\sqrt{A}}\partial _v^{m+r}\left( (1-B v)^2-C^2 v^2\right) ^{-1/2}\bigg |_{v=1}. \end{aligned}$$
(A.16)

Similarly, for noisy PSSTS at the output, for \(r^{\textrm{th}}\) moment,

$$\begin{aligned} \left\langle {\hat{a}}^{\dag r}{\hat{a}}^r\right\rangle&=\textrm{Tr}[{\hat{a}}^{\dag k}{\hat{a}}^k\phi _s({\hat{\rho }}_{\textrm{PSTS}})]=\textrm{Tr}\bigg [ \frac{N_{a,m^{-}}^{-1}}{\sqrt{A}}\int \frac{d^2 z}{s\pi }\frac{d^2\alpha }{\pi }\frac{d^2\beta }{\pi }(\beta ^*\alpha )^m\\&\quad \times \exp \left[ \frac{C}{2}(\alpha ^{*2}+{\beta }^2)+B\alpha ^*\beta +\frac{1}{2}\{z(\alpha ^*-\beta ^*)-z^*(\alpha -\beta )\}\right. \\&\left. \quad -\frac{|\alpha |^2+|\beta |^2}{2}-\frac{|z|^2}{s}\right] {\hat{a}}^{\dag r}{\hat{a}}^r|{\alpha +z} \rangle \langle {\beta +z}|\bigg ]\\&=\frac{N_{a,m^{-}}^{-1}}{\sqrt{A}}\int \frac{d^2 z}{\pi s}\frac{d^2\alpha }{\pi }\frac{d^2\beta }{\pi } (\beta ^*\alpha )^m((\alpha +z)(\beta ^*+z^*))^r\\&\quad \times \exp \left[ \frac{C}{2}(\alpha ^{*2}+{\beta }^2)+B\alpha ^*\beta +\frac{1}{2}\{z(\alpha ^*-\beta ^*)-z^*(\alpha -\beta )\}\right. \\&\left. \quad -\frac{|\alpha |^2+|\beta |^2}{2}-\frac{|z|^2}{s}\right] \langle {\beta +z}|{\alpha +z}\rangle , \end{aligned}$$

using above, one can see,

$$\begin{aligned}&\left\langle {\hat{a}}^{\dag r}{\hat{a}}^r\right\rangle =\frac{N_{a,m^{-}}^{-1}}{\sqrt{A}}\int \frac{d^2 z}{s\pi }\frac{d^2\alpha }{\pi }\frac{d^2\beta }{\pi } (\beta ^*\alpha )^m((\alpha +z)(\beta ^*+z^*))^r\\&\qquad \times \exp {\left[ \frac{C}{2}(\alpha ^{*2}+{\beta }^2)+B\alpha ^*\beta -\beta ^*z-z^*\alpha -{|\alpha |^2+|\beta |^2}-\left( 1+\frac{1}{s}\right) |z|^2\right] }\\&\quad =\frac{N_{a,m^{-}}^{-1}}{\sqrt{A}}\partial _v^r\int \frac{d^2z}{s\pi }\frac{d^2\alpha }{\pi }\frac{d^2\beta }{\pi } (\beta ^*\alpha )^m\\&\qquad \times \exp \left[ \frac{C}{2}(\alpha ^{*2}+{\beta }^2)+B\alpha ^*\beta -\beta ^*z-z^*\alpha +v(\alpha +z)(\beta ^*+z^*)-{|\alpha |^2+|\beta |^2}\right. \\&\qquad \left. -\left( 1+\frac{1}{s}\right) |z|^2\right] \\&\quad =\frac{N_{a,m^{-}}^{-1}}{\sqrt{A}}\partial _v^r\int \frac{d^2z}{s\pi }\frac{d^2\alpha }{\pi }\frac{d^2\beta }{\pi } (\beta ^*\alpha )^m\\&\qquad \times \exp \left[ \frac{C}{2}(\alpha ^{*2}+{\beta }^2)+B\alpha ^*\beta +v\alpha \beta ^*-{|\alpha |^2+|\beta |^2}\right. \\&\qquad \left. -\left( 1+\frac{1}{s}-v\right) |z|^2-z^*\alpha (1-v)-\beta ^*z(1-v)\right] \\&\quad =\frac{N_{a,m^{-}}^{-1}}{\sqrt{A}}\partial _v^r\int \frac{d^2\alpha }{\pi }\frac{d^2\beta }{\pi } \frac{(\beta ^*\alpha )^m}{s\left( 1+\frac{1}{s}-v\right) }\\&\qquad \times \exp \left[ \frac{C}{2}(\alpha ^{*2}+{\beta }^2)+B\alpha ^*\beta +v\alpha \beta ^*-{|\alpha |^2+|\beta |^2}+\frac{(1-v)^2}{\left( 1+\frac{1}{s}-v\right) }\alpha \beta ^*\right] \\&\quad =\frac{N_{a,m^{-}}^{-1}}{\sqrt{A}}\partial _v^r\partial _u^m\int \frac{d^2\alpha }{\pi }\frac{d^2\beta }{\pi } \frac{1}{s\left( 1+\frac{1}{s}-v\right) }\\&\qquad \times \exp {\left[ \frac{C}{2}(\alpha ^{*2}+{\beta }^2)+B\alpha ^*\beta -{|\alpha |^2+|\beta |^2}+u\alpha \beta ^*\right] }\\&\quad =\frac{N_{a,m^{-}}^{-1}}{\sqrt{A}}\partial _v^r\partial _u^m\int \frac{d^2\alpha }{\pi } \frac{1}{s\left( 1+\frac{1}{s}-v\right) }\exp {\left( \frac{C}{2}(\alpha ^{*2}+u^2\alpha ^2)-(1-B u)|\alpha |^2\right) }\\&\quad =\frac{N_{a,m^{-}}^{-1}}{\sqrt{A}}\partial _v^r\partial _u^m \frac{1}{s\left( 1+\frac{1}{s}-v\right) }\left( (1-B u)^2-C^2 u^2\right) ^{-1/2}, \end{aligned}$$

where \(u=\frac{(1-v)^2}{\left( 1+\frac{1}{s}-v\right) }+v\) and \(v=1\).

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Meena, R., Banerjee, S. Characterization of quantumness of non-Gaussian states under the influence of Gaussian channel. Quantum Inf Process 22, 298 (2023). https://doi.org/10.1007/s11128-023-04037-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11128-023-04037-7

Keywords

Navigation