Skip to main content
Log in

Deterministic hierarchical quantum operation sharing with five-qubit partially entangled states

  • Review
  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

To study quantum remote control in the form of hierarchical quantum sharing, by using a Hadamard gate, control-NOT gates and rotation gates, we construct a five-qubit partially entangled state as quantum channels of quantum remote control. By integrating the ideas of hierarchical quantum state sharing and quantum operation teleportation, we put forward two novel schemes for quadripartite hierarchical sharing a single-qubit quantum operation on a qubit in any sharer’s site with the help of the local operations and classical communication. In each scheme, there is a hierarchy among the receivers concerning powers to reconstruct the conceivable state. Owing to various unitary operations and projective measurements, the unit success probability can always be achieved irrespective of the parameters of the pre-shared partially entangled state as quantum channel. The first scheme is applicable for arbitrary unitary operations, while the other one is valid only if the operation \(\mathcal {U}_d\) (\(d=0,1\)) in question is known to belongs to some restricted sets. Consequently, the latter scheme is more economical in terms of quantum and classical resources, and the local operation complexity involved is also reduced.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Data availability

All data generated or analyzed during this study are included in this published article.

References

  1. Bennet, C.H., Brassard, G., Crépeau, C., Jozsa, R., Pere, A., Wootters, W.K.: Teleporting an unknown quantum state via dual classical and Einstein–Podolsky–Rosen channels. Phys. Rev. Lett. 70, 1895–1899 (1993)

    ADS  MathSciNet  MATH  Google Scholar 

  2. Bouwmeeter, D., Mattle, K., Pan, J.W., Weinfurter, H., Zeilinger, A., Zukowski, M.: Experimental quantum teleportation of arbitrary quantum state. Appl. Phys. B Lassers Opt. 67(6), 749–752 (1998)

    ADS  Google Scholar 

  3. Roy, S., Ghosh, B.: A revisit to non-maximally entangled mixed states: teleportation witness, noisy channel and discord. Quantum Inf. Process. 16(4), 108 (2017)

    ADS  MathSciNet  MATH  Google Scholar 

  4. Wen, K., Zhao, Y., Tu, J., Xu, J., Li, Y.: A coherent receiver based on SIM for quantum communication. IEEE Photon. Technol. Lett. 30(1), 27–31 (2018)

    ADS  Google Scholar 

  5. Jiang, L.N.: Quantum teleportation under different collective noise environment. Int. J. Theor. Phys. 58(2), 522–530 (2019)

    MATH  Google Scholar 

  6. Joy, D., Sabir, M.: Efficient schemes for the quantum teleportation of a sub-class of tripartite entangled states. Quantum Inf. Process. 17(7), 170 (2018)

    ADS  MathSciNet  MATH  Google Scholar 

  7. Cheung, C.Y., Zhang, Z.J.: Criterion for faithful teleportation with an arbitrary multiparticle channel. Phys. Rev. A 80, 022327 (2009)

    ADS  Google Scholar 

  8. Ursin, R., Jennewein, T., Aspelmeyer, M., et al.: Communication: quantum teleportation across the Danuble. Nature 430, 849 (2004)

    ADS  Google Scholar 

  9. Barrett, M.D., Chiaverini, J., Schaetz, T., et al.: Deteministic quantum teleportation of atomic qubits. Nature 429, 737–739 (2004)

    ADS  Google Scholar 

  10. Marcikic, I., De Riedmatten, H., Tittel, W., et al.: Long-distance teleportation of qubits at telecommunication wavelengths. Nature 421, 509–513 (2003)

    ADS  Google Scholar 

  11. Jin, X.M., Ren, J.G., Yang, B., et al.: Experimental free-space quantum teleportation. Nat. Photonics 4, 376–381 (2010)

    ADS  Google Scholar 

  12. Sang, M.H., Dai, H.L.: Controlled teleportation of an arbitrary three-qubit state by using two four-qubit entangled states. Int. J. Theor. Phys. 53(6), 1930–1934 (2014)

    MATH  Google Scholar 

  13. Li, D.F., Wang, R., Zhang, J., et al.: A noise immunity controlled quantum teleportation protocal. Quantum Inf. Process. 15(11), 4819–4837 (2016)

    ADS  MATH  Google Scholar 

  14. Hou, K., Bao, D.Q., Zhu, C.J., Yang, Y.P.: Controlled teleportation of an arbitrary two-qubit entanglement in noises environment. Quantum Inf. Process. 18, 104 (2019)

    ADS  MATH  Google Scholar 

  15. Chen, X., Jiang, M., Chen, X.P., Li, H.: Quantum state sharing of an arbitrary three-qubit state by using three sets of W-class states. Quantum Inf. Process. 12, 2405 (2013)

    ADS  MathSciNet  MATH  Google Scholar 

  16. Peng, J.Y., Mo, Z.W.: Quantum sharing an unknown multi-particle state via POVM. Int. J. Theor. Phys. 52(2), 620–633 (2013)

    MATH  Google Scholar 

  17. Muralidharan, S., Jain, S., Panigrahi, P.K.: Splitting of quantum information using N-qubit linear cluster states. Opt. Commun. 284, 1082 (2011)

    ADS  Google Scholar 

  18. Peng, J.Y., Bai, M.Q., Mo, Z.W.: Hierarchical and probabilistic quantum state sharing via a non- maximally entangled \(|\chi \rangle \) state. Chin. Phys. B 23, 010304 (2014)

    ADS  Google Scholar 

  19. Zhang, Z.J., Li, Y., Man, Z.X.: Multiparty quantum secret sharing. Phys. Rev. A 71, 044301 (2005)

    ADS  MathSciNet  MATH  Google Scholar 

  20. Zhou, R.G., Xu, R., Lan, H.: Bidirectional quantum quantum teleportation by using six-qubit cluster state. IEEE Access 7, 44269–44275 (2019)

    Google Scholar 

  21. Ma, P.C., Chen, G.B., Li, X.W., Zhan, Y.B.: Bidirectional controlled quantum teleportation in the three-dimension system. Int. J. Theor. Phys. 57(7), 2233–2240 (2018)

    MathSciNet  MATH  Google Scholar 

  22. Peng, J.Y., Bai, M.Q., Mo, Z.W.: Bidirectional quantum states sharing. Int. J. Theor. Phys. 55, 2481–2489 (2016)

    MathSciNet  MATH  Google Scholar 

  23. Wu, F., Bai, M.Q., Zhang, Y.C., et al.: Cyclic quantum teleportation of an unknown multi-particle high-dimension state. Mod. Phys. Lett. B 34(5), 2050073 (2020)

    ADS  MathSciNet  Google Scholar 

  24. Peng, J.Y., He, Y.: Annular controlled teleportation. Int. J. Theor. Phys. 58, 3271–3281 (2019)

    MathSciNet  MATH  Google Scholar 

  25. Zhou, R.G., Ling, C.: Asymmetric cyclic controlled quantum teleportation by using nine-qubit entangled state. Int. J. Theor. Phys. 60, 3435–3459 (2021)

    MathSciNet  MATH  Google Scholar 

  26. Peng, J.Y., Tang, L., Yang, Z., et al.: Cyclic teleportation in noisy channel with nondemolition parity analysis and weak measurement. Quantum Inf. Process, pp. 21–114 (2022)

  27. Shukla, C., Pathak, A.: Hierarchical quantum communication. Phys. Lett. 377(19–20), 1337–1344 (2013)

    MathSciNet  MATH  Google Scholar 

  28. Peng, J.Y., Wo, Z.W.: Hierarchical and probabilistic quantum state sharing with a nonmaximally four-qubit cluster state. Int. J. Quantum. Inf. 11, 1350004 (2013)

    MathSciNet  MATH  Google Scholar 

  29. Huelga, S.F., Vanccaro, J.A., Chefles, A.: Quantum remote control: teleportation of unitary operations. Phys. Rev. A 63, 042303 (2001)

    ADS  MATH  Google Scholar 

  30. Zou, X.B., Pahlke, K., Mathis, W.: Teleportation implementation of nondeterministic quantum logic operations by using linear optical elements. Phys. Rev. A 65, 064305 (2002)

    ADS  Google Scholar 

  31. Wang, A.M.: Combined and controlled remote implementations of partially unknown quantum operations of multiqubits using Greenberger-Horne-Zeilinger states. Phys. Rev. A 75, 062323 (2007)

    ADS  MathSciNet  Google Scholar 

  32. Peng, J.Y., He, Y.: Cyclic controlled remote implementation of partially unknown quantum operations. Int. J. Theor. Phys. 58, 3065–3072 (2019)

    MathSciNet  MATH  Google Scholar 

  33. Zhao, N.B., Wang, A.M.: Hybrid protocol of remote implementations of quantum operations. Phys. Rev. A 76, 062317 (2007)

    ADS  Google Scholar 

  34. Peng, J.Y., Lei, H.X.: Cyclic remote implementation of partially unknown quantum operations. Chin. J. Electron. 30(2), 378–383 (2021)

    Google Scholar 

  35. Zhang, Z.J., Cheung, C.Y.: Shared quantum remote control: quantum operation sharing. J. Phys. B: At. Mol. Opt. Phys. 44(16), 165508 (2011)

    ADS  Google Scholar 

  36. Zhang, K.J., Zhang, L., Song, T.T., Yang, Y.H.: A potential application in quantum networks- deterministic quantum operation sharing schemes with Bell ststes. Sci. China-Phys. Mech. Astron. 59, 660302 (2016)

    Google Scholar 

  37. Peng, J.Y., Xiang, Y.: Multiparty quantum rotation operation sharing. Int. J. Theor. Phys. 60, 3771–3780 (2021)

    MathSciNet  MATH  Google Scholar 

  38. Xing, H., Liu, D.C., Xing, P.F., et al.: Deterministic tripartite sharing of eight restricted sets of single-qubit operations with two Bell states or a GHZ state. Int. J. Quantum Inf. 12, 1450012 (2014)

    MathSciNet  MATH  Google Scholar 

  39. Ji, Q.B., Liu, Y.M., Yin, X.F., et al.: Quantum operation sharing with symmetric and asymmertric W states. Quantum Inf. Process. 12, 2453 (2013)

    ADS  MathSciNet  MATH  Google Scholar 

  40. Ye, B.L., Liu, Y.M., Liu, X.S., Zhang, Z.J.: Remotely sharing a single-qubit operation with a five-qubit genuine state. Chin. Phys. Lett. 30, 020301 (2013)

    ADS  Google Scholar 

  41. Yuan, H., Zhang, W.B., Yin, X.F.: Simplistic quantum operation sharing with five-qubit genuinely entangled state. Quantum Inf. Process. 19, 122 (2020)

    ADS  MathSciNet  MATH  Google Scholar 

  42. Peng, J.Y., Bai, M.Q., Mo, Z.W.: Multicharacters remote rotation sharing with five-particle cluster state. Quantum Inf. Process. 18, 339 (2019)

    ADS  MathSciNet  MATH  Google Scholar 

  43. Wang, S.F., Liu, Y.M., Chen, J.I., Liu, X.S., Zhang, Z.J.: Deterministic single-qubit operation sharing with five-qubit cluster state. Quantum Inf. Process. 12, 2497 (2013)

    ADS  MathSciNet  MATH  Google Scholar 

  44. Xing, H.: Four-party deterministic operation sharing with six-qubit cluster state. Quantum Inf. Process. 13, 1553 (2014)

    ADS  MathSciNet  MATH  Google Scholar 

  45. Peng, J.: Tripartite operation sharing with five-qubit Brown state. Quantum Inf. Process. 15, 2465 (2016)

    ADS  MathSciNet  MATH  Google Scholar 

  46. Zhou, S.Q., Bai, M.Q., Zhang, C.Y.: Analysis and construction of four-party deterministic operation sharing with a generalized seven-qubit Brown state. Mod. Phys. Lett. B 31, 1750190 (2017)

    ADS  MathSciNet  Google Scholar 

  47. Peng, J.Y., Bai, M.Q., Tang, L., et al.: Perfect controlled joint remote state preparation of arbitrary multi-qubit states independent of entanglement degree of the quantum channel. Quantum Inf. Process. 20(10), 1–18 (2021)

    MathSciNet  MATH  Google Scholar 

  48. Anu, V., Shukla, C., et al.: An integrated hierarchical dynamic quantum secret sharing protocol. Int. J. Theor. Phys. 54, 3143–3154 (2015)

    MATH  Google Scholar 

  49. Han, L.F., Liu, Y.M., Shi, S.H., Zang, Z.J.: Improving the security of a quantum secret sharing protocol between multiparty and multiparty without entanglement. Phys. Lett. A 361, 24 (2007)

    ADS  MathSciNet  MATH  Google Scholar 

  50. Bouwmeester, D., Pan, J.W., Mattle, K., et al.: Experimental quantum teleportation. Nature 190, 575 (1997)

    ADS  MATH  Google Scholar 

  51. Solano, E., Cesar, C.L., de Matos Filho, R.L., Zagury, N.: Reliable teleportation in trapped ions. Eur. Phys. J. D. 13, 121 (2001)

    ADS  Google Scholar 

  52. Zheng, S.B.: Scheme for approximate conditional teleportation of an unknown atomic state without the Bell-state measurement. Phys. Rev. A 69, 064302 (2004)

    ADS  Google Scholar 

  53. Riebe, M., Häffner, H., Roos, C.F., et al.: Deterministic quantum teleportation with atms. Nature 429, 734 (2004)

    ADS  Google Scholar 

  54. Lim, H.T., Kim, Y.S., Ra, Y.S., et al.: Experimental realization of an approximate transpose operation for qutrit systems using a structural physical approximation. Phys. Rev. A 86, 042334 (2012)

    ADS  Google Scholar 

  55. Peng, Z.H., Zou, J., Liu, X.J.: Scheme for implementing efficient quantum information processing with multiqubit W-class states in equity QED. J. Phys. B: At. Mol. Opt. Phys. 41, 1065505 (2008)

    Google Scholar 

Download references

Acknowledgements

This work is supported by the National Natural Science Foundation of China (Grant No. 11671284), Natural Science Foundation of Sichuan Province (Grant No. 2022NSFSC0534).

Author information

Authors and Affiliations

Authors

Contributions

In fact, all of the authors’ contributions to this paper are important. The specific contributions are as follows. The first author plays a major role in the idea and writes the main content. The second author devotes to all the process of calculation and the language problem. The third author establishes the overall framework of this article.

Corresponding author

Correspondence to Zhen Yang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Peng, JY., Tang, L. & Yang, Z. Deterministic hierarchical quantum operation sharing with five-qubit partially entangled states. Quantum Inf Process 22, 265 (2023). https://doi.org/10.1007/s11128-023-03963-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11128-023-03963-w

Keywords

Navigation