Skip to main content
Log in

Quantum communication with SU(2) invariant separable \(2\times N\) level systems

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

Information is encoded in a qubit in the form of its Bloch vector. In this paper, we propose protocols for remote transfers of information in a known and an unknown qubit to qudits using SU(2)-invariant \(2 \times N\)-level separable discordant states as quantum channels. These states have been identified as separable equivalents of the two-qubit entangled Werner states in Bharath and Ravishankar (Phys Rev A 89:062110, 2014). Due to \(SU(2) \times SU(2)\) invariance of these states, the remote qudit can be changed by performing appropriate measurements on the qubit. We also propose a protocol for transferring information of a family of unknown qudits to remote qudits using \(2 \times N\)-level states as channels. Finally, we propose a protocol for swapping of quantum discord from \(2\times N\)-level systems to \(N \times N\)-level systems. All the protocols proposed in this paper involve separable states as quantum channels.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Notes

  1. For \(S=20\), the equivalent state \(\frac{1}{2S+1}(\mathbb {1}+\frac{S_z}{S})\) (of a pure single-qubit state \(\frac{1}{2}(\mathbb {1}+\sigma _z)\)) has fidelity 0.876 with the completely mixed state \(\frac{1}{2S+1}\mathbb {1}\).

References

  1. Bell, J.S.: On the Einstein Podolsky Rosen paradox. Physics 1, 195 (1964)

    Article  MathSciNet  Google Scholar 

  2. Horodecki, R., Horodecki, P., Horodecki, M., Horodecki, K.: Quantum entanglement. Rev. Mod. Phys. 81, 865–942 (2009)

    Article  MathSciNet  ADS  Google Scholar 

  3. Wiseman, H.M., Jones, S.J., Doherty, A.C.: Steering, entanglement, nonlocality, and the Einstein–Podolsky–Rosen paradox. Phys. Rev. Lett. 98, 140402 (2007)

    Article  MathSciNet  ADS  Google Scholar 

  4. Ollivier, H., Zurek, W.H.: Quantum discord: a measure of the quantumness of correlations. Phys. Rev. Lett. 88, 017901 (2001)

  5. Bennett, C.H., Brassard, G., Crépeau, C., Jozsa, R., Peres, A., Wootters, W.K.: Teleporting an unknown quantum state via dual classical and Einstein–Podolsky–Rosen channels. Phys. Rev. Lett. 70, 1895–1899 (1993)

    Article  MathSciNet  ADS  Google Scholar 

  6. Bennett, C.H., Wiesner, S.J.: Communication via one- and two-particle operators on Einstein–Podolsky–Rosen states. Phys. Rev. Lett. 69, 2881–2884 (1992)

    Article  MathSciNet  ADS  Google Scholar 

  7. Bennett, C.H., DiVincenzo, D.P., Shor, P.W., Smolin, J.A., Terhal, B.M., Wootters, W.K.: Remote state preparation. Phys. Rev. Lett. 87, 077902 (2001)

  8. Vazirani, U., Vidick, T.: Fully device-independent quantum key distribution. Phys. Rev. Lett. 113, 140501 (2014)

    Article  ADS  Google Scholar 

  9. Żukowski, M., Zeilinger, A., Horne, M.A., Ekert, A.K.: “event-ready-detectors” bell experiment via entanglement swapping. Phys. Rev. Lett. 71, 4287–4290 (1993)

  10. Popescu, S.: Bell’s inequalities versus teleportation: what is nonlocality? Phys. Rev. Lett. 72, 797–799 (1994)

  11. Huang, Y.-F., Liu, B.-H., Liang Peng, Y.-H., Li, L.L., Li, C.-F., Guo, G.-C.: Experimental generation of an eight-photon Greenberger–Horne–Zeilinger state. Nat. Commun. 2(1), 1–6 (2011)

  12. Monz, T., Schindler, P., Barreiro, J.T., Chwalla, M., Nigg, D., Coish, W.A., Harlander, M., Hänsel, W., Hennrich, M., Blatt, R.: 14-qubit entanglement: creation and coherence. Phys. Rev. Lett. 106, 130506 (2011)

  13. Yao, X.-C., Wang, T.-X., Ping, X., He, L., Pan, G.-S., Bao, X.-H., Peng, C.-Z., Chao-Yang, L., Chen, Y.-A., Pan, J.-W.: Observation of eight-photon entanglement. Nat. Photonics 6(4), 225–228 (2012)

  14. Dakić, B., Lipp, Y.O., Ma, X., Ringbauer, M., Kropatschek, S., Barz, S., Paterek, T., Vedral, V., Zeilinger, A., Brukner, Č., et al.: Quantum discord as resource for remote state preparation. Nat. Phys. 8(9), 666–670 (2012)

  15. Madhok, V., Datta, A.: Quantum discord as a resource in quantum communication. Int. J. Mod. Phys. B 27(01n03), 1345041 (2013)

  16. Fonseca, A.: High-dimensional quantum teleportation under noisy environments. Phys. Rev. A 100, 062311 (2019)

    Article  ADS  Google Scholar 

  17. Perez-Garcia, B., McLaren, M., Goyal, S.K., Hernandez-Aranda, R.I., Forbes, A., Konrad, T.: Quantum computation with classical light: Implementation of the Deutsch–Jozsa algorithm. Phys. Lett. A 380(22–23), 1925–1931 (2016)

    Article  MathSciNet  ADS  Google Scholar 

  18. Perez-Garcia, B., Hernandez-Aranda, R.I., Forbes, A., Konrad, T.: The first iteration of Grover’s algorithm using classical light with orbital angular momentum. J. Mod. Opt. 65(16), 1942–1948 (2018)

  19. Spreeuw, R.J.C.: Classical wave-optics analogy of quantum-information processing. Phys. Rev. A 63, 062302 (2001)

    Article  ADS  Google Scholar 

  20. Goyal, S.K., Roux, F.S., Forbes, A., Konrad, T.: Implementing quantum walks using orbital angular momentum of classical light. Phys. Rev. Lett. 110, 263602 (2013)

    Article  ADS  Google Scholar 

  21. Bharath, H.M., Ravishankar, V.: Classical simulation of entangled states. Phys. Rev. A 89, 062110 (2014)

    Article  ADS  Google Scholar 

  22. Adhikary, S., Panda, I.K., Ravishankar, V.: Super-quantum states in su(2) invariant level systems. Ann. Phys. (2016)

  23. Molina-Terriza, G., Juan, P.T., Lluis, T.: Twisted photons. Nat. Phys. 3(5), 305–310 (2007)

  24. Erhard, M., Fickler, R., Krenn, M., Zeilinger, A.: Twisted photons: new quantum perspectives in high dimensions. Light Sci. Appl. 7(3), 17146–17146 (2018)

    Article  Google Scholar 

  25. Radcliffe, J.M.: Some properties of coherent spin states. J. Phys. A Gen. Phys. 4(3), 313–323 (1971)

    Article  ADS  Google Scholar 

  26. Werner, R.F.: Quantum states with Einstein–Podolsky–Rosen correlations admitting a hidden-variable model. Phys. Rev. A 40(8), 4277 (1989)

    Article  ADS  Google Scholar 

  27. Nielsen, M.A., Chuang, I.L.: Quantum Information and Quantum Computation. Cambridge University Press, Cambridge, vol. 2(8), p. 23 (2000)

  28. Bužek, V., Hillery, M.: Quantum copying: beyond the no-cloning theorem. Phys. Rev. A 54, 1844–1852 (1996)

    Article  MathSciNet  ADS  Google Scholar 

  29. Bock, M., Lenhard, A., Chunnilall, C., Becher, C.: Highly efficient heralded single-photon source for telecom wavelengths based on a ppln waveguide. Opt. express 24(21), 23992–24001 (2016)

    Article  ADS  Google Scholar 

  30. Shen, Y., Wang, X., Xie, Z., Min, C., Fu, X., Liu, Q., Gong, M., Yuan, X.: Optical vortices 30 years on: Oam manipulation from topological charge to multiple singularities. Light Sci. Appl. 8(1), 1–29 (2019)

    Article  Google Scholar 

  31. Padgett, M.J.: Orbital angular momentum 25 years on. Opt. Express 25(10), 11265–11274 (2017)

    Article  ADS  Google Scholar 

  32. Ma, L., Xiaolong, S.: Remote transfer of gaussian quantum discord. Optics express 22(13), 15894–15903 (2014)

  33. Xie, C., Liu, Y., Xing, H., Chen, J., Zhang, Z.: Quantum correlation swapping. Quantum Inf. Process. 14(2), 653–679 (2015)

    Article  MathSciNet  ADS  Google Scholar 

  34. Lütkenhaus, N., Calsamiglia, J., Suominen, K.-A.: Bell measurements for teleportation. Phys. Rev. A 59, 3295–3300 (1999)

    Article  MathSciNet  ADS  Google Scholar 

  35. Ghosh, S., Kar, G., Roy, A., Sen(De), A., Sen, U.: Distinguishability of bell states. Phys. Rev. Lett., 87:277902 (2001)

  36. Calsamiglia, J.: Generalized measurements by linear elements. Phys. Rev. A 65, 030301 (2002)

    Article  ADS  Google Scholar 

  37. Cao, C., Zhang, L., Han, Y.-H., Yin, P.-P., Fan, L., Duan, Y.-W., Zhang, R.: Complete and faithful hyperentangled-bell-state analysis of photon systems using a failure-heralded and fidelity-robust quantum gate. Optics express 28(3), 2857–2872 (2020)

  38. Fan, L., Cao, C.: Deterministic cnot gate and complete bell-state analyzer on quantum-dot-confined electron spins based on faithful quantum nondemolition parity detection. JOSA B 38(5), 1593–1603 (2021)

Download references

Acknowledgements

It is a pleasure to thank Soumik Adhikary for discussions. We thank the anonymous referees, whose comments have really helped us improve the quality of the presentation and for bringing several relevant references to our attention. Sooryansh and Rajni thank CSIR (Grant no.: 09/086 (1278)/ 2017-EMR-I) and UGC for funding their research, respectively.

Author information

Authors and Affiliations

Authors

Contributions

All the authors have contributed equally in all respects.

Corresponding author

Correspondence to Sooryansh Asthana.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Transfer of information from an unknown qubit to a remote qudit

Detailed calculations leading to Eqs. (22), (23), (24) and (25) are as follows. They essentially employ three properties, viz., tracelessness of Pauli matrices, \(\mathrm{Tr}(\varvec{\sigma }\cdot \hat{m}\varvec{\sigma }\cdot \hat{n}) = 2\hat{m}\cdot \hat{n}\), and, \(\mathrm{Tr}(A\otimes B)=\mathrm{Tr}(A)\mathrm{Tr}(B).\) It is sufficient to illustrate it for one case. The same method works for the other three equations as well.

We start with the case when Alice measures a singlet state out of the four Bell states, i.e. \(\rho _1^{AA}=\frac{1}{4}(\mathbb {1}-\varvec{{\sigma }_1} \cdot \varvec{\sigma }_2)\), which leads to equation (22), as follows:

$$\begin{aligned}&\dfrac{1}{(2S+1)2^4} \mathrm{Tr}_{12}\Big \{\Big (\mathbb {1}-\varvec{{\sigma }_1} \cdot \varvec{\sigma }_2\Big )(\mathbb {1}+\varvec{{\sigma }_1} \cdot \hat{p})\otimes (1-\alpha \varvec{\sigma }_2\cdot \hat{S}_3)\Big \}\nonumber \\&\quad =\dfrac{1}{(2S+1)2^4} \mathrm{Tr}_{12}\Big \{\Big (\mathbb {1}-\varvec{{\sigma }_1} \cdot \varvec{\sigma }_2\Big )\Big (\mathbb {1}+{\varvec{\sigma }_1} \cdot \hat{p}-\alpha \varvec{\sigma }_2\cdot \hat{S}_3-\alpha \varvec{\sigma }_{\mathbf{1}}\cdot \hat{p}\otimes \varvec{\sigma }_{\mathbf{2}}\cdot \hat{S}_3\Big )\Big \}\nonumber \\&\quad =\dfrac{1}{(2S+1)2^4} \mathrm{Tr}_{12}\Big \{\mathbb {1}+\varvec{\sigma }_{\mathbf{1}}\cdot \hat{p}-\alpha \varvec{\sigma }_2\cdot \hat{S}_3-\alpha {\varvec{\sigma }_1} \cdot \hat{p}\otimes \varvec{\sigma }_2\cdot \hat{S}_3\nonumber \\&\qquad -\sigma _{1x}\sigma _{2x}(\mathbb {1}+{\varvec{\sigma }_1}\cdot \hat{p}-\alpha \varvec{\sigma }_2\cdot \hat{S}_3-\alpha {\varvec{\sigma }_1}\cdot \hat{p}\otimes \varvec{\sigma }_2\cdot \hat{S}_3)-\sigma _{1y}\sigma _{2y}(\mathbb {1}+{\varvec{\sigma }_1}\cdot \hat{p}\nonumber \\&\qquad -\alpha \mathbb {1}\otimes \varvec{\sigma }_2\cdot \hat{S}_3-\alpha {\varvec{\sigma }_1}\cdot \hat{p}\otimes \varvec{\sigma }_2\cdot \hat{S}_3)-\sigma _{1z}\sigma _{2z}(\mathbb {1}+{\varvec{\sigma }_1}\cdot \hat{p}-\alpha \varvec{\sigma }_2\cdot \hat{S}_3-\alpha {\varvec{\sigma }_1}\cdot \hat{p}\nonumber \\&\qquad \otimes \varvec{\sigma }_2\cdot \hat{S}_3)\Big \}\nonumber \\&\quad =\dfrac{1}{(2S+1)2^4}\Big \{4\mathbb {1}+4p_x\hat{S}_{3x}+4p_y\hat{S}_{3y}+4p_z\hat{S}_{3z}\Big \}\nonumber \\&\quad =\dfrac{1}{4}\times \dfrac{1}{2S+1}(\mathbb {1}+\alpha \hat{S}_3\cdot \hat{p}), \end{aligned}$$
(39)

which is the same as the equation (22).

Transfer of information from an unknown qudit to a remote qudit

When Alice measures \(\hat{S}_1\cdot \varvec{\sigma }_2\), she gets the states \(\dfrac{1}{2S+1}\Big (\mathbb {1}-\dfrac{\alpha }{3}\hat{S}_3\cdot \mathbf {p}\Big )\) and \(\dfrac{1}{2S+1}\Big (\mathbb {1}+\dfrac{\alpha }{3}\dfrac{S+1}{S}\hat{S}_3\cdot \mathbf {p}\Big )\) with respective probabilities of \(\frac{S+1}{2S+1}\) and \(\frac{S}{2S+1}\). The detailed calculations are as follows, which essentially employ the following two properties:

  1. 1.

    The spin operators \(S_x, S_y, S_z\) are traceless, i.e. \(\mathrm{Tr}~ S_i=0\) and \(\mathrm{Tr}~ \sigma _j=0\), \(i, j \in {x, y, z}\).

  2. 2.

    Trace of tensor product of two operators is equal to the product of the trace of operators, i.e. \(\mathrm{Tr}(A\otimes B)=\mathrm{Tr}(A)\mathrm{Tr}(B).\)

Case I When Alice’s state is projected into the eigenstate corresponding to the eigenvalue +1, which occurs with a probability \(\frac{S+1}{2S+1}\), then

$$\begin{aligned}&\dfrac{1}{2(2S+1)^2} \mathrm{Tr}_{12}\Big \{{\Big (\mathbb {1}+\dfrac{S}{S+1}\hat{S}_1\cdot \varvec{\sigma }_{2}\Big )}(\mathbb {1}+\hat{S}_1\cdot \mathbf {p})\otimes (\mathbb {1}-\alpha \varvec{\sigma }_2\cdot \hat{S}_3)\Big \}\nonumber \\&\quad =\dfrac{1}{2(2S+1)^2}\mathrm{Tr}_{12}\Big \{{\Big (\mathbb {1}+\dfrac{S}{S+1}\hat{S}_1\cdot \varvec{\sigma }_{2}\Big )}\nonumber \\&\quad \quad \times \Big (\mathbb {1}+\hat{S}_1\cdot \mathbf {p}-\alpha \varvec{\sigma }_2\cdot \hat{S}_3-\alpha \hat{S}_1\cdot \mathbf {p}\otimes \varvec{\sigma }_2\cdot \hat{S}_3 \Big )\Big \}\nonumber \\&\quad =\dfrac{1}{2(2S+1)^2}\mathrm{Tr}_{12}\Big \{\mathbb {1}+\hat{S}_1\cdot \mathbf {p}-\alpha \varvec{\sigma }_2\cdot \hat{S}_3-\alpha \hat{S}_1\cdot \mathbf {p}\nonumber \\&\qquad \otimes \varvec{\sigma }_2\cdot \hat{S}_3+\dfrac{S}{S+1}\hat{S}_1\cdot \varvec{\sigma }_{2}\nonumber \\&\qquad +\dfrac{S}{S+1}(\hat{S}_1\cdot \varvec{\sigma }_{2})(\hat{S}_1\cdot \mathbf {p})-\alpha \dfrac{S}{S+1}(\hat{S}_1\cdot \varvec{\sigma }_{2})(\varvec{\sigma }_2\cdot \hat{S}_3)\nonumber \\&\qquad -\alpha \dfrac{S}{S+1}(\hat{S}_1\cdot \varvec{\sigma }_{2})(\hat{S}_1\cdot \mathbf {p}\otimes \varvec{\sigma }_2\cdot \hat{S}_3) \Big \}\nonumber \\&\quad =\dfrac{1}{2(2S+1)^2}\Big \{\mathbb {1}+\hat{S}_1\cdot \mathbf {p}-\alpha { \varvec{\sigma }_2\cdot \hat{S}_3}-\alpha (\hat{S}_1\cdot \mathbf {p})\otimes \varvec{\sigma }_2\cdot \hat{S}_3\nonumber \\&\qquad +\dfrac{S}{S+1}\hat{S}_1\cdot \varvec{\sigma }_{2}\nonumber \\&\qquad +\dfrac{S}{S+1}(\hat{S}_1\cdot \varvec{\sigma }_{2})(\hat{S}_1\cdot \mathbf {p}\nonumber \\&\qquad -\alpha \dfrac{S}{S+1}(\hat{S}_1\cdot \varvec{\sigma }_{2})(\varvec{\sigma }_2\cdot \hat{S}_3) -\alpha \dfrac{S}{S+1}(\hat{S}_1\cdot \varvec{\sigma }_{2})(\hat{S}_1\cdot \mathbf {p}\otimes \varvec{\sigma }_2\cdot \hat{S}_3) \Big \}\nonumber \\&\quad =\dfrac{1}{2S+1}\Big (\mathbb {1}-\dfrac{\alpha }{3}\hat{S}_3\cdot \mathbf {p}\Big ). \end{aligned}$$
(40)

The formula that we have used \(\mathrm{Tr}(\hat{S}_i\hat{S}_j) = \frac{(S+1)(2S+1)}{3S}\delta _{ij}\) can be proved as follows. We have

$$\begin{aligned} S_x^2+S_y^2+S_z^2 = S(S+1)\mathbb {1}. \end{aligned}$$
(41)

Taking trace of both sides and employing the property that \(\mathrm{Tr}S_x^2 = \mathrm{Tr}S_y^2 = \mathrm{Tr}S_z^2\), we obtain

$$\begin{aligned} 3\mathrm{Tr}S_x^2&= S(S+1)\mathrm{Tr}\mathbb {1} = S(S+1)(2S+1)\nonumber \\ \implies \mathrm{Tr}S_x^2&= \frac{S(S+1)(2S+1)}{3}. \end{aligned}$$
(42)

Similarly, \(\mathrm{Tr}S_y^2 = \mathrm{Tr}S_z^2 = \frac{S(S+1)(2S+1)}{3}\). Furthermore, we have the following expression of invariance of trace under a unitary transformation,

$$\begin{aligned} \mathrm{Tr}(S_xS_y) = \mathrm{Tr}(US_xS_yU^{\dagger }), \end{aligned}$$
(43)

where U is a unitary transformation. Consider a rotation about the X axis such that \(\hat{y} \rightarrow -\hat{y}\) and \(\hat{z}\rightarrow -\hat{z}\). Thus, under the effect of this transformation

$$\begin{aligned} \mathrm{Tr}(S_xS_y) = \mathrm{Tr}(-S_xS_y)\implies \mathrm{Tr}(S_xS_y) =0. \end{aligned}$$
(44)

Both of these results can be combined to the following equation:

$$\begin{aligned} \mathrm{Tr}(\hat{S}_i\hat{S}_j) = \frac{(S+1)(2S+1)}{3S}\delta _{ij}. \end{aligned}$$
(45)

Case II When Alice’s state is projected to the eigenstate corresponding to the eigenvalue \(-\frac{S+1}{S}\), which occurs with a probability \(\frac{S}{2S+1}\), then

$$\begin{aligned}&\dfrac{1}{2(2S+1)^2}\mathrm{Tr}_{12}\Big \{(\mathbb {1}-\hat{S}_1\cdot \varvec{\sigma }_{2})(\mathbb {1}+\hat{S}_1\cdot \mathbf {p})\otimes (1-\alpha \varvec{\sigma }_2\cdot \hat{S}_3)\Big \}\nonumber \\&\quad =\dfrac{1}{2S+1}\Big (\mathbb {1}+\alpha \dfrac{(S+1)}{3S}\hat{S}_3\cdot \mathbf {p}\Big ).\nonumber \\ \end{aligned}$$
(46)

This result is calculated following the same methodology as done for the Case I.

Swapping of quantum discord

In this appendix, we present those cases of swapping of quantum discord, proposed in Sect. (3.4), in which the remaining three Bell states are measured. The calculations for rest of the three projection operators of Bell basis are as follows. They essentially employ three properties, viz., tracelessness of Pauli matrices, \(\mathrm{Tr}(\varvec{\sigma }\cdot \hat{m}\varvec{\sigma }\cdot \hat{n}) = 2\hat{m}\cdot \hat{n}\), and, \(\mathrm{Tr}(A\otimes B)=\mathrm{Tr}(A)\mathrm{Tr}(B).\)

  1. 1.

    When the measurement of \(\dfrac{1}{4}\Big (\mathbb {1}-({\sigma }_{1x}{\sigma }_{4x}-{\sigma }_{1y}{\sigma }_{4y}-{\sigma }_{1z}{\sigma }_{4z})\Big )\) is made, the post-measurement state is

    $$\begin{aligned}&\mathrm{Tr}_{14}\dfrac{1}{2^4(2S+1)^2}\Big \{\Big (\mathbb {1}-({\sigma }_{1x}{\sigma }_{4x}-{\sigma }_{1y}{\sigma }_{4y}-{\sigma }_{1z}{\sigma }_{4z})\Big )(\mathbb {1}-\alpha {\varvec{\sigma }_1}\cdot \hat{S}_2)\nonumber \\&\qquad (\mathbb {1}-\beta \hat{S}_3\cdot \varvec{\sigma }_4)\Big \}\nonumber \\&\quad =\dfrac{1}{2^4(2S+1)^2}\mathrm{Tr}_{14}\Big (\mathbb {1}-\alpha \beta \varvec{\sigma }_{1}\cdot \hat{S}_2({\sigma }_{1x}{\sigma }_{4x}-{\sigma }_{1y}{\sigma }_{4y}-{\sigma }_{1z}{\sigma }_{4z})\hat{S}_3\cdot \varvec{\sigma }_4\Big )\nonumber \\&\quad =\dfrac{1}{2^4(2S+1)^2}\mathrm{Tr}_{14}\Big (\mathbb {1} -\alpha \beta \varvec{\sigma }_{1}\cdot \hat{S}_2({\sigma }_{1x}{\sigma }_{4x}\hat{S_{3x}} \sigma _{4x}\nonumber \\&\qquad +\,\sigma _{1x}{\sigma }_{4x}\hat{S}_{3y}\sigma _{4y} +\sigma _{1x}{\sigma }_{4x}\hat{S}_{3z}\sigma _{4z}\nonumber \\&\qquad - {\sigma }_{1y}{\sigma }_{4y}\hat{S}_{3x}\sigma _{4x}-{\sigma }_{1y}{\sigma }_{4y}\hat{S}_{3y}\sigma _{4y}-{\sigma }_{1y}{\sigma }_{4y}\hat{S}_{3z}\sigma _{4z}-{\sigma }_{1z}{\sigma }_{4z}\hat{S}_{3x}\sigma _{4x}\nonumber \\&\qquad - {\sigma }_{1z}{\sigma }_{4z}\hat{S}_{3y}\sigma _{4y}-{\sigma }_{1z}{\sigma }_{4z}\hat{S}_{3z}\sigma _{4z}\Big )\nonumber \\&\quad =\dfrac{1}{2^4(2S+1)^2}\mathrm{Tr}_{1}\Big (2\mathbb {1}-\alpha \beta \varvec{\sigma }_{1}\cdot \hat{S}_2({2\sigma }_{1x}\hat{S}_{3x}-2{\sigma }_{1y}\hat{S}_{3y}-2{\sigma }_{1z}\hat{S}_{3z}\Big )\nonumber \\&\quad =\dfrac{1}{2^3(2S+1)^2}\mathrm{Tr}_{1}\Big (\mathbb {1}-\alpha \beta \varvec{\sigma }_{1}\cdot \hat{S}_2({\sigma }_{1x}\hat{S}_{3x}-{\sigma }_{1y}\hat{S}_{3y}-{\sigma }_{1z}\hat{S}_{3z}\Big )\nonumber \\&\quad =\dfrac{1}{2^3(2S+1)^2}\mathrm{Tr}_{1}\Big (\mathbb {1}-\alpha \beta (\sigma _{1x}\hat{S}_{2x}({\sigma }_{1x}\hat{S}_{3x} -{\sigma }_{1y}\hat{S}_{3y}-{\sigma }_{1z}\hat{S}_{3z})\nonumber \\&\qquad +\,\sigma _{1y}\hat{S}_{2y}({\sigma }_{1x}\hat{S}_{3x}-{\sigma }_{1y}\hat{S}_{3y} -{\sigma }_{1z}\hat{S}_{3z})\nonumber \\&\qquad +\,\sigma _{1z}\hat{S}_{2z}({\sigma }_{1x}\hat{S}_{3x}-{\sigma }_{1y}\hat{S}_{3y}-{\sigma }_{1z}\hat{S}_{3z})\Big )\nonumber \\&\quad =\dfrac{1}{2^3(2S+1)^2}\mathrm{Tr}_{1}\Big (\mathbb {1}-\alpha \beta (\sigma _{1x}\hat{S}_{2x}({\sigma }_{1x}\hat{S}_{3x}-{\sigma }_{1y}\hat{S}_{3y}-{\sigma }_{1z}\hat{S}_{3z})\nonumber \\&\qquad +\,\sigma _{1y}\hat{S}_{2y}({\sigma }_{1x}\hat{S}_{3x}-{\sigma }_{1y}\hat{S}_{3y}-{\sigma }_{1z}\hat{S}_{3z})+\sigma _{1z}\hat{S}_{2z}({\sigma }_{1x}\hat{S}_{3x}-{\sigma }_{1y}\hat{S}_{3y}-{\sigma }_{1z}\hat{S}_{3z})\Big )\nonumber \\&\quad =\dfrac{1}{2^3(2S+1)^2}\Big (2\mathbb {1}-\alpha \beta (2\hat{S}_{2x}\hat{S}_{3x}-2\hat{S}_{2y}\hat{S}_{3y}-2\hat{S}_{3z}\hat{S}_{3z})\Big )\nonumber \\&\quad =\dfrac{1}{4}\times \dfrac{1}{(2S+1)^2}\Big (\mathbb {1}-\frac{\alpha \beta }{S^2}(S_{2x}S_{3x}-S_{2y}S_{3y}-S_{2z}S_{3z})\Big ). \end{aligned}$$
    (47)

    The factor of \(\frac{1}{4}\) represents the probability with which this state is prepared. Other calculations are performed using the same approach.

  2. 2.

    When the measurement of \(\dfrac{1}{4}\Big (\mathbb {1}-(-{\sigma }_{1x}{\sigma }_{4x}-{\sigma }_{1y}{\sigma }_{4y}+{\sigma }_{1z}{\sigma }_{4z})\Big )\) is made

    $$\begin{aligned}&\mathrm{Tr}_{14}\dfrac{1}{2^4(2S+1)^2}\Big \{\Big (\mathbb {1}-(-{\sigma }_{1x}{\sigma }_{4x}-{\sigma }_{1y}{\sigma }_{4y}+{\sigma }_{1z}{\sigma }_{4z})\Big )\nonumber \\&\qquad \times (\mathbb {1}-\alpha {\varvec{\sigma }_1} \cdot \hat{S}_2)(\mathbb {1}-\beta \hat{S}_3\cdot \varvec{\sigma }_4)\Big \}\nonumber \\&\quad =\dfrac{1}{2^4(2S+1)^2}\mathrm{Tr}_{14}\Big (\mathbb {1}-\alpha \beta \varvec{\sigma }_{1}\cdot \hat{S}_2(-{\sigma }_{1x}{\sigma }_{4x}-{\sigma }_{1y}{\sigma }_{4y}+{\sigma }_{1z}{\sigma }_{4z})\hat{S}_3\cdot \varvec{\sigma }_4\Big )\nonumber \\&\quad =\dfrac{1}{4}\times \dfrac{1}{(2S+1)^2}\Big (\mathbb {1}-\frac{\alpha \beta }{S^2}(-S_{2x}S_{3x}-S_{2y}S_{3y}+S_{2z}S_{3z})\Big ). \end{aligned}$$
    (48)

    The factor of \(\frac{1}{4}\) represents the probability with which this state is prepared.

  3. 3.

    When the measurement of \(\dfrac{1}{4}\Big (\mathbb {1}-(-{\sigma }_{1x}{\sigma }_{4x}+{\sigma }_{1y}{\sigma }_{4y}-{\sigma }_{1z}{\sigma }_{4z})\Big )\) is made

    $$\begin{aligned}&\mathrm{Tr}_{14}\dfrac{1}{2^4(2S+1)^2} \Big \{\Big (\mathbb {1}-(-{\sigma }_{1x}{\sigma }_{4x}+{\sigma }_{1y}{\sigma }_{4y}-{\sigma }_{1z}{\sigma }_{4z})\Big )(\mathbb {1}-\alpha {\varvec{\sigma }_1}\cdot \hat{S}_2)\nonumber \\&\qquad (\mathbb {1}-\beta \hat{S}_3\cdot \varvec{\sigma }_4)\Big \}\nonumber \\&\quad =\dfrac{1}{2^4(2S+1)^2}\mathrm{Tr}_{14}\Big (\mathbb {1}-\alpha \beta \varvec{\sigma }_{1}\cdot \hat{S}_2(-{\sigma }_{1x}{\sigma }_{4x}+{\sigma }_{1y}{\sigma }_{4y}-{\sigma }_{1z}{\sigma }_{4z})\hat{S}_3\cdot \varvec{\sigma }_4\Big )\nonumber \\&\quad =\dfrac{1}{4}\times \dfrac{1}{(2S+1)^2}\Big (\mathbb {1}-\frac{\alpha \beta }{S^2}(-S_{2x}S_{3x}+S_{2y}S_{3y}-S_{2z}S_{3z})\Big ). \end{aligned}$$
    (49)

    The factor of \(\frac{1}{4}\) represents the probability with which this state is prepared.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Asthana, S., Bala, R. & Ravishankar, V. Quantum communication with SU(2) invariant separable \(2\times N\) level systems. Quantum Inf Process 21, 35 (2022). https://doi.org/10.1007/s11128-021-03358-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11128-021-03358-9

Keywords

Navigation