Skip to main content
Log in

QSurfNet: a hybrid quantum convolutional neural network for surface defect recognition

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

In this paper, we propose a novel hybrid quantum–classical convolutional neural network named QSurfNet, inspired by an efficient surface defect recognition model called SurfNetv2. SurfNetv2 is an established high-speed classical convolution neural network (CNN) model for image recognition, and QSurfNet further inherits the legacy by introducing quantum CNN (QCNN) layers, reducing the number of convolution blocks in the model architecture and the image size required for recognition. The QSurfNet architecture consists of a QCNN module, a feature extraction module, and a surface defect recognition module. The algorithm works on end-to-end supervised quantum machine learning and deep learning techniques to classify the surface defect categories of the surface defect image datasets. For this research, we used the 8 × 8-pixel and 12 × 12-pixel resolution RGB image information from the public Northeastern University dataset, and an industry-sourced calcium silicate board private dataset. We used principal component analysis for image dimensionality reduction across the R, G, and B channels, individually. We compare the performance of QSurfNet with six state-of-the-art methods on these datasets upon recognition results on test accuracy, recall, precision, and F1-Measure performance metrics. QSurfNet is novel in terms of the algorithm design methodology that can turn any classical CNN algorithm into state-of-the-art QCNN. Hence, the proposed methodology contributes to the practical feasibility of developing novel convolutional architecture designs of hybrid quantum–classical algorithms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. du Castel, B.: Pattern activation/recognition theory of mind. Front. Comput. Neurosci. 9, 90 (2015)

    Article  Google Scholar 

  2. Yann, L., Yoshua, B., Geoffrey, E.H.: Deep learning. Nature (2015). https://doi.org/10.1038/nature14539

    Article  Google Scholar 

  3. Piron, C.: On the foundations of quantum physics. In: Quantum Mechanics, Determinism, Causality, and Particles, pp. 105–116. Springer (1976)

  4. Maxwell, J.C.: VIII. A dynamical theory of the electromagnetic field. Philos. Trans. R. Soc. Lond. 155, 459–512 (1865). https://doi.org/10.1098/rstl.1865.0008

    Article  ADS  Google Scholar 

  5. Nelkon, M.M., Parker, R.: Advanced Level Physics. Heinemann Educational Books Ltd (1970)

  6. Benbarrad, T., Salhaoui, M., Kenitar, S.B., Arioua, M.: Intelligent machine vision model for defective product inspection based on machine learning. J. Sens. Actuator Netw. 10(1), 7 (2021)

    Article  Google Scholar 

  7. De Stefano, V.: “Negotiating the algorithm”: automation, artificial intelligence, and labor protection. Comp. Labor Law Policy J. 41, 15 (2019). https://doi.org/10.2139/ssrn.3178233

    Article  Google Scholar 

  8. Le, H.N., Bao, T.V., Debnath, N.C.: Computer vision–based system for automation and industrial applications. In: Artificial Intelligence and the Fourth Industrial Revolution, pp. 3–43. Jenny Stanford Publishing (2022)

  9. Mishra, S., Tsai, C.-Y.: Design of superior parameterized quantum circuits for quantum image classification. Presented at the 2022 14th international conference on computer and automation engineering (ICCAE), Brisbane, Australia (2022)

  10. Broughton, M., et al.: TensorFlow quantum: a software framework for quantum machine learning. arXiv preprint arXiv:2003.02989, pp. 56 (2020). https://doi.org/10.48550/arXiv.2003.02989

  11. Tsai, C.-Y., Chen, H.-W.: SurfNetv2: an improved real-time SurfNet and its applications to defect recognition of calcium silicate boards. Sensors 20(16), 4356 (2020). https://doi.org/10.3390/s20164356

    Article  ADS  Google Scholar 

  12. Arikan, S., Varanasi, K., Stricker, D.: Surface defect classification in real-time using convolutional neural networks. arXiv: Image and Video Processing 2019. https://doi.org/10.48550/arXiv.1904.04671

  13. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, USA, 27–30 June 2016 (2016), pp. 770–778. https://doi.org/10.1109/CVPR.2016.90

  14. Iandola, F., Moskewicz, M., Karayev, S., Girshick, R., Darrell, T., Keutzer, K.: DenseNet: implementing efficient convnet descriptor pyramids. arXiv : Computer Vision and Pattern Recognition 2014. https://doi.org/10.48550/arXiv.1404.1869

  15. Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale image recognition. In: International Conference on Learning Representations (ICLR 2015), San Diego, CA (2015), Ed., 7–9 May 2015, p. 14. https://doi.org/10.48550/arXiv.1409.1556

  16. Sandler, M., Howard, A., Zhu, M., Zhmoginov, A., Chen, L.-C.: "Mobilenetv2: inverted residuals and linear bottlenecks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Salt Lake City, UT, USA (2018), pp. 4510–4520. https://doi.org/10.48550/arXiv.1801.04381

  17. Brigham, E.O.: The Fast Fourier Transform and Its Applications. Prentice-Hall Inc, NJ, United States (1988)

    Google Scholar 

  18. Guifang, W., Haichao, Z., Xiuming, S., Jinwu, X., Ke, X.: A bran-new feature extraction method and its application to surface defect recognition of hot rolled strips (2007). https://doi.org/10.1109/ical.2007.4338916

  19. Zhanjiang, Y., Xiaozhou, L., Huadong, Y., Dan, X., Aimei, L., Hao, L.: Research on surface defect inspection for small magnetic rings (2009). https://doi.org/10.1109/icma.2009.5246333

  20. Wang, F.-L., Zuo, B.: Detection of surface cutting defect on magnet using Fourier image reconstruction. J. Cent. South Univ. 23(5), 1123–1131 (2016). https://doi.org/10.1007/s11771-016-0362-y

    Article  MathSciNet  Google Scholar 

  21. Chan, C.-H., Pang, G.K.: Fabric defect detection by Fourier analysis. IEEE Trans. Ind. Appl. 36(5), 1267–1276 (2000). https://doi.org/10.1109/28.871274

    Article  ADS  Google Scholar 

  22. Hu, G.-H., Wang, Q.-H., Zhang, G.-H.: Unsupervised defect detection in textiles based on Fourier analysis and wavelet shrinkage. Appl. Opt. 54(10), 2963–2980 (2015). https://doi.org/10.1364/AO.54.002963

    Article  ADS  Google Scholar 

  23. Mahajan, P., Kolhe, S., Patil, P.: A review of automatic fabric defect detection techniques. Adv. Comput. Res. 1(2), 18–29 (2009)

    Google Scholar 

  24. Boujelbene, R., Jemaa, Y.B., Zribi, M.: A comparative study of recent improvements in wavelet-based image coding schemes. Multimed. Tools Appl. 78(2), 1649–1683 (2019). https://doi.org/10.1007/s11042-018-6262-4

    Article  Google Scholar 

  25. Shensa, M.J.: The discrete wavelet transform: wedding the a trous and Mallat algorithms. IEEE Trans. Signal Process. 40(10), 2464–2482 (1992). https://doi.org/10.1109/78.157290

    Article  ADS  MATH  Google Scholar 

  26. Abbate, A., Koay, J., Frankel, J., Schroeder, S.C., Das, P.: Signal detection and noise suppression using a wavelet transform signal processor: application to ultrasonic flaw detection. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 44(1), 14–26 (1997). https://doi.org/10.1109/58.585186

    Article  Google Scholar 

  27. Rosenboom, L., Kreis, T., Jüptner, W.: Surface description and defect detection by wavelet analysis. Meas. Sci. Technol. 22(4), 045102 (2011). https://doi.org/10.1088/0957-0233/22/4/045102

    Article  ADS  Google Scholar 

  28. Wu, X.-Y., Xu, K., Xu, J.-W.: Application of undecimated wavelet transform to surface defect detection of hot rolled steel plates. In: 2008 Congress on Image and Signal Processing, vol. 4, pp. 528–532. IEEE (2008). https://doi.org/10.1109/CISP.2008.278

  29. Jeon, Y.-J., Yun, J.P., Choi, D.-C., Kim, S.W.: Defect detection algorithm for corner cracks in steel billet using discrete wavelet transform. In: 2009 ICCAS-SICE, Fukuoka, Japan, 18–21 Aug 2009, pp. 2769–2773. IEEE (2009)

  30. Chang, Q., Zhang, Y., Sun, Z.: Research on surface defect detection algorithm of ice-cream bars based on clustering. In: 2019 IEEE 3rd Information Technology, Networking, Electronic and Automation Control Conference (ITNEC), pp. 537–541. IEEE (2019)

  31. Khumaidi, A., Yuniarno, E.M., Purnomo, M.H.: Welding defect classification based on convolution neural network (CNN) and Gaussian kernel. In: 2017 International Seminar on Intelligent Technology and Its Applications (ISITIA), pp. 261–265. IEEE (2017). https://doi.org/10.1109/ISITIA.2017.8124091

  32. Maestro-Watson, D., Balzategui, J., Eciolaza, L., Arana-Arexolaleiba, N.: Deep learning for deflectometric inspection of specular surfaces. In: The 13th International Conference on Soft Computing Models in Industrial and Environmental Applications, pp. 280-289. Springer (2018)

  33. Song, L., Li, X., Yang, Y., Zhu, X., Guo, Q., Yang, H.: Detection of micro-defects on metal screw surfaces based on deep convolutional neural networks. Sensors 18(11), 3709 (2018). https://doi.org/10.3390/s18113709

    Article  ADS  Google Scholar 

  34. Zhang, A., et al.: Automated pixel-level pavement crack detection on 3D asphalt surfaces using a deep-learning network. Comput. Aided Civ. Infrastruct. Eng. 32(10), 805–819 (2017). https://doi.org/10.1111/mice.12297

    Article  Google Scholar 

  35. Wei, R., Bi, Y.: Research on recognition technology of aluminum profile surface defects based on deep learning. Materials 12(10), 1681 (2019). https://doi.org/10.3390/ma12101681

    Article  ADS  Google Scholar 

  36. Ren, S., He, K., Girshick, R., Sun, J.: Faster r-cnn: towards real-time object detection with region proposal networks. In: Advances in Neural Information Processing Systems, vol. 28 (2015)

  37. Sison, H., Konghuayrob, P., Kaitwanidvilai, S.: A convolutional neural network for segmentation of background texture and defect on copper clad lamination surface. In: 2018 International Conference on Engineering, Applied Sciences, and Technology (ICEAST), pp. 1–4. IEEE (2018)

  38. Cuevas, E., Zaldivar, D., Pérez-Cisneros, M.: A novel multi-threshold segmentation approach based on differential evolution optimization. Expert Syst. Appl. 37(7), 5265–5271 (2010). https://doi.org/10.1016/j.eswa.2010.01.013

    Article  Google Scholar 

  39. Tang, J.: A color image segmentation algorithm based on region growing. In: 2010 2nd International Conference on Computer Engineering and Technology, vol. 6, pp. V6–634-V6–637. IEEE (2010). https://doi.org/10.1109/ICCET.2010.5486012

  40. Chuang, K.-S., Tzeng, H.-L., Chen, S., Wu, J., Chen, T.-J.: Fuzzy c-means clustering with spatial information for image segmentation. Comput. Med. Imaging Graph. 30(1), 9–15 (2006). https://doi.org/10.1016/j.compmedimag.2005.10.001

    Article  Google Scholar 

  41. Dhanachandra, N., Manglem, K., Chanu, Y.J.: Image segmentation using K-means clustering algorithm and subtractive clustering algorithm. Procedia Comput. Sci. 54, 764–771 (2015)

    Article  Google Scholar 

  42. Mia, S., Rahman, M.M.: An efficient image segmentation method based on linear discriminant analysis and K-means algorithm with automatically splitting and merging clusters. Int. J. Imaging Robot. 18(1), 62–72 (2018)

    Google Scholar 

  43. Xu, Y., Li, D., Xie, Q., Wu, Q., Wang, J.: Automatic defect detection and segmentation of tunnel surface using modified Mask R-CNN. Measurement 178, 109316 (2021). https://doi.org/10.1016/j.measurement.2021.109316

    Article  Google Scholar 

  44. Xu, R., Hao, R., Huang, B.: Efficient surface defect detection using self-supervised learning strategy and segmentation network. Adv. Eng. Inform. 52, 101566 (2022). https://doi.org/10.1016/j.aei.2022.101566

    Article  Google Scholar 

  45. Funck, J., Zhong, Y., Butler, D., Brunner, C., Forrer, J.: Image segmentation algorithms applied to wood defect detection. Comput. Electron. Agric. 41(1–3), 157–179 (2003). https://doi.org/10.1016/S0168-1699(03)00049-8

    Article  Google Scholar 

  46. Celik, T., Tjahjadi, T.: Unsupervised colour image segmentation using dual-tree complex wavelet transform. Comput. Vis. Image Underst. 114(7), 813–826 (2010). https://doi.org/10.1016/j.cviu.2010.03.002

    Article  Google Scholar 

  47. Lo, E.H.S., Pickering, M.R., Frater, M.R., Arnold, J.F.: Image segmentation from scale and rotation invariant texture features from the double dyadic dual-tree complex wavelet transform. Image Vis. Comput. 29(1), 15–28 (2011). https://doi.org/10.1016/j.imavis.2010.08.004

    Article  Google Scholar 

  48. Bergholm, V., et al.: Pennylane: automatic differentiation of hybrid quantum-classical computations. arXiv preprint arXiv:1811.04968 (2018)

  49. Gonzalez, C.: Cloud based QC with Amazon braket. Digit. Welt 5(2), 14–17 (2021). https://doi.org/10.1007/s42354-021-0330-z

    Article  Google Scholar 

  50. Guerreschi, G.G., Hogaboam, J., Baruffa, F., Sawaya, N.P.: Intel quantum simulator: a cloud-ready high-performance simulator of quantum circuits. Quantum Sci. Technol. 5(3), 034007 (2020)

    Article  ADS  Google Scholar 

  51. Das, M., Miguel, A.D., Mehrotra, A., Sahgal, V.: Quantum defect analyser. In: BMW Group Quantumm Computing Challenge (2021). [Online]. Available: https://github.com/iotaisolutions/BMWQuantumChallenge2021/blob/main/Reports/BMW_Quantum_Computing_Challenge_Solution%20Description.pdf

  52. Schuetz, M., Shishenina, E., Klepsch, J., Luckow, A.: Use case insights from the BMW Group quantum challenge. In: AWS Invent, Las Vegas, Nevada (2021), p. 23. [Online]. Available: https://d1.awsstatic.com/events/reinvent/2021/Use_case_insights_from_the_BMW_Group_quantum_challenge_QTC304.pdf

  53. Glick, J.R., et al.: Covariant quantum kernels for data with group structure. arXiv : Quantum Physics, p. 18 (2021). https://doi.org/10.48550/arXiv.2105.03406

  54. John, P.: Quantum computing in the NISQ era and beyond. Quantum 2, 79 (2018). https://doi.org/10.22331/q-2018-08-06-79

    Article  Google Scholar 

  55. Scott, A.: Read the fine print. Nat. Phys. (2015). https://doi.org/10.1038/nphys3272

    Article  Google Scholar 

  56. Ian, G., Yoshua, B., Aaron, C.: Deep learning (2016). [Online]. Available: https://www.deeplearningbook.org/

  57. Fei, Y., Salvador, E.V.-A.: Quantum image processing. Int. J. Quantum Inf. (2020). https://doi.org/10.1007/978-981-32-9331-1

    Article  MATH  Google Scholar 

  58. Mateusz, O., Przemysław, S., Piotr, G.: Quantum image classification using principal component analysis. Theor. Appl. Inform. 27(1), 1–12 (2015). https://doi.org/10.20904/271001

    Article  Google Scholar 

  59. Jolliffe, I.: Principal component analysis. Springer Series in Statistics, pp. 338–372 (1986). https://doi.org/10.1002/9781118445112.stat06472

  60. Liberty, E., Woolfe, F., Martinsson, P.-G., Rokhlin, V., Tygert, M.: Randomized algorithms for the low-rank approximation of matrices. Proc. Natl. Acad. Sci. 104(51), 20167–20172 (2007). https://doi.org/10.1073/pnas.0709640104

    Article  ADS  MathSciNet  MATH  Google Scholar 

  61. Seth, L., Seth, L., Masoud, M., Patrick, R.: Quantum principal component analysis. Nat. Phys. 10(9), 631–633 (2014). https://doi.org/10.1038/nphys3029

    Article  Google Scholar 

  62. Ha, J., Heo, J.: Performance comparison of quantum phase estimation algorithm with different number of register qubits on noisy quantum processor. Presented at the IEEE Region 10 Symposium (TENSYMP), Jeju, Republic of Korea, 23–25 Aug 2021 (2021)

  63. Zhaokai, L., et al.: Resonant quantum principal component analysis. Sci. Adv. 7(34), 25–29 (2021). https://doi.org/10.1126/sciadv.abg2589

    Article  Google Scholar 

  64. Rebentrost, P., Mohseni, M., Lloyd, S.: Quantum support vector machine for big data classification. Phys. Rev. Lett. 113(13), 130503 (2014). https://doi.org/10.1103/PhysRevLett.113.130503

    Article  ADS  Google Scholar 

  65. Delilbasic, A., Cavallaro, G., Willsch, M., Melgani, F., Riedel, M., Michielsen, K.: Quantum support vector machine algorithms for remote sensing data classification. Presented at the IEEE International Geoscience and Remote Sensing Symposium IGARSS, Brussels, Belgium, 11–16 July 2021, pp. 2153-7003 (2021)

  66. Alina, O.S., Shapovalova, N.: Classification problem solving using quantum machine learning mechanisms. In: 4th Workshop for Young Scientists in Computer Science & Software Engineering, Kryvyi Rih, Ukraine, vol. 6, no. 7, CEUR Workshop Proceedings, p. 8 (2022). [Online]. Available: https://ceur-ws.org/Vol-3077/paper06.pdf. [Online]. Available: https://ceur-ws.org/Vol-3077/paper06.pdf

  67. Kariya, A., Behera, B.K.: Investigation of Quantum Support Vector Machine for Classification in NISQ era. arXiv: Quantum Physics (2021). https://doi.org/10.48550/arXiv.2112.06912

  68. Rana, A., Vaidya, P., Gupta, G.: A comparative study of quantum support vector machine algorithm for handwritten recognition with support vector machine algorithm. Mater. Today Proc. 56, 2025–2030 (2022). https://doi.org/10.1016/j.matpr.2021.11.350

    Article  Google Scholar 

  69. Cover, T., Hart, P.: Nearest neighbor pattern classification. IEEE Trans. Inf. Theory 13(1), 21–27 (1967). https://doi.org/10.1109/TIT.1967.1053964

    Article  MATH  Google Scholar 

  70. Lloyd, S., Mohseni, M., Rebentrost, P.: Quantum algorithms for supervised and unsupervised machine learning. arXiv preprint arXiv:1307.0411 (2013)

  71. Li, J., Lin, S., Yu, K., Guo, G.: Quantum K-nearest neighbor classification algorithm based on Hamming distance. Quantum Inf. Process. 21(1), 1–17 (2022). https://doi.org/10.1007/s11128-021-03361-0

    Article  ADS  MathSciNet  MATH  Google Scholar 

  72. Zak, M., Williams, C.P.: Quantum neural nets. Int. J. Theor. Phys. 37(2), 651–684 (1998). https://doi.org/10.1023/A:1026656110699

    Article  MathSciNet  MATH  Google Scholar 

  73. Schuld, M., Sinayskiy, I., Petruccione, F.: An introduction to quantum machine learning. Contemp. Phys. 56(2), 172–185 (2015). https://doi.org/10.1080/00107514.2014.964942

    Article  ADS  MATH  Google Scholar 

  74. McCulloch, W.S., Pitts, W.: A logical calculus of the ideas immanent in nervous activity. Bull. Math. Biol. 5(4), 115–133 (1943)

    MathSciNet  MATH  Google Scholar 

  75. Maria, S., Sinayskiy, I., Ilya, S., Francesco, P.: The quest for a quantum neural network. Quantum Inf. Process. 13(11), 2567–2586 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  76. Schuld, M., Bocharov, A., Svore, K.M., Wiebe, N.: Circuit-centric quantum classifiers. Phys. Rev. A 101(3), 032308 (2020)

    Article  ADS  MathSciNet  Google Scholar 

  77. Schuld, M., Petruccione, F.: Supervised Learning with Quantum Computers, p. 287. Springer, Berlin (2018)

    Book  MATH  Google Scholar 

  78. Mari, A., Bromley, T., Izaac, J., Schuld, M., Killoran, N.: Transfer learning in hybrid classical-quantum neural networks. Quantum (2020). https://doi.org/10.22331/q-2020-10-09-340

    Article  Google Scholar 

  79. Gawron, P., Lewiński, S.: Multi-spectral image classification with quantum neural network. In: IGARSS 2020–2020 IEEE International Geoscience and Remote Sensing Symposium, 26 Sep -2 Oct 2020, pp. 3513–3516 (2020). https://doi.org/10.1109/IGARSS39084.2020.9323065

  80. Natansh, M., et al.: Medical image classification via quantum neural networks. arXiv : Quantum Physics (2021). https://doi.org/10.48550/arXiv.2109.01831

  81. Alam, M., Satwik, K., Topaloglu, R., Swaroop, G.: ICCAD special session paper: quantum-classical hybrid machine learning for image classification. Presented at the 2021 IEEE/ACM International Conference On Computer Aided Design (ICCAD), Munich, Germany, 01–04 Nov 2021 (2021)

  82. Kaya, M., Hajimirza, S.: Using a novel transfer learning method for designing thin film solar cells with enhanced quantum efficiencies. Sci. Rep. 9(1), 1–10 (2019). https://doi.org/10.1038/s41598-019-41316-9

    Article  Google Scholar 

  83. Azevedo, V., Silva, C., Dutra, I.: Quantum transfer learning for breast cancer detection. Quantum Mach. Intell. 4(5), 1–14 (2022). https://doi.org/10.1007/s42484-022-00062-4

    Article  Google Scholar 

  84. Mittal, S., Dana, S.K.: Gender recognition from facial images using hybrid classical-quantum neural network. In: 2020 IEEE Students Conference on Engineering & Systems (SCES), pp. 1–6. IEEE (2020) https://doi.org/10.1109/SCES50439.2020.9236711

  85. Zhou, J., Gan, Q., Krzyżak, A., Suen, C.Y.: Recognition of handwritten numerals by quantum neural network with fuzzy features. Int. J. Doc. Anal. Recognit. (IJDAR) 2(1), 30–36 (1999). https://doi.org/10.1007/s100320050034

    Article  Google Scholar 

  86. Mittal, H., Saraswat, M., Bansal, J.C., Nagar, A.: Fake-face image classification using improved quantum-inspired evolutionary-based feature selection method. In: 2020 IEEE Symposium Series on Computational Intelligence (SSCI), pp. 989–995. IEEE (2020). https://doi.org/10.1109/SSCI47803.2020.9308337

  87. Xu, Y., Zhang, X., Gai, H.: Quantum neural networks for face recognition classifier. Procedia Eng. 15, 1319–1323 (2011)

    Article  Google Scholar 

  88. Cong, I., Choi, S., Lukin, M.D.: Quantum convolutional neural networks. Nat. Phys. 15(2), 1273–1278 (2019)

    Article  Google Scholar 

  89. Guoming, C., et al.: Quantum convolutional neural network for image classification. Presented at the 2020 8th International Conference on Digital Home (ICDH), Dalian, China (2020)

  90. Seunghyeok, O., Jaeho, C., Jong-Kook, K., Joongheon, K.: Quantum convolutional neural network for resource-efficient image classification: a quantum random access memory (QRAM) approach. In: 2021 International Conference on Information Networking (ICOIN) (2021). https://doi.org/10.1109/icoin50884.2021.9333906

  91. Chen, S.Y.-C., Wei, T.-C., Zhang, C., Yu, H., Yoo, S.: Hybrid Quantum-Classical Graph Convolutional Network. arXiv: Machine Learning, no. arXiv:2101.06189 (2021). https://doi.org/10.48550/arXiv.2101.06189

  92. Chen, S.Y.-C., Wei, T.-C., Zhang, C., Yu, H., Yoo, S.: Quantum convolutional neural networks for high energy physics data analysis. Phys. Rev. Res. 4(1), 013231 (2022). https://doi.org/10.1103/PhysRevResearch.4.013231

    Article  Google Scholar 

  93. Shijie, W., YanHu, C., ZengRong, Z., Gui Lu, L.: A quantum convolutional neural network on NISQ devices. AAPPS Bull. 32(1), 1–11 (2022). https://doi.org/10.1007/s43673-021-00030-3

    Article  ADS  Google Scholar 

  94. Hur, T., Kim, L., Park, D.K.: Quantum convolutional neural network for classical data classification. Quantum Mach. Intell. 4(3), 18 (2022). https://doi.org/10.1007/s42484-021-00061-x

    Article  Google Scholar 

  95. Chao-Han Huck, Y., et al.: Decentralizing feature extraction with quantum convolutional neural network for automatic speech recognition. Presented at the IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp. 6523–6527 (2021)

  96. Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information, 10th Anniversary Edition. Cambridge University Press (2010). https://doi.org/10.1017/CBO9780511976667

  97. Willsch, M., Willsch, D., Michielsen, K.: Lecture Notes: Programming Quantum Computers. arXiv :Quantum Physics (2022). https://doi.org/10.48550/arXiv.2201.02051

  98. Schuld, M., Sinayskiy, I., Petruccione, F.: The quest for a quantum neural network. Quantum Inf. Process. 13(11), 2567–2586 (2014). https://doi.org/10.1007/s11128-014-0809-8

    Article  ADS  MathSciNet  MATH  Google Scholar 

  99. James, S., Josh, I., Nathan, K., Giuseppe, C.: Quantum natural gradient. Quantum 4(269), 15 (2020). https://doi.org/10.22331/q-2020-05-25-269

    Article  Google Scholar 

  100. Ville, B., et al.: PennyLane: automatic differentiation of hybrid quantum-classical computations. arXiv: Quantum Physics (2018). https://doi.org/10.48550/arXiv.1811.04968

  101. Bartkiewicz, K., Gneiting, C., Černoch, A., Jiráková, K., Lemr, K., Nori, F.: Experimental kernel-based quantum machine learning in finite feature space. Sci. Rep. 10(1), 12356 (2020). https://doi.org/10.1038/s41598-020-68911-5

    Article  ADS  Google Scholar 

  102. Sainadh, U.S.: An efficient quantum algorithm and circuit to generate eigenstates of SU (2) and SU (3) representations. arXiv: Quantum Physics 1309.2736, pp. 121 (2013). https://doi.org/10.48550/arXiv.1309.2736

  103. Iordanis, K., Jonas, L., Anupam, P.: Quantum algorithms for deep convolutional neural networks. In: Eighth International Conference on Learning Representations. (2020). https://doi.org/10.48550/arXiv.1911.01117.

  104. Egger, D.J., et al.: Quantum computing for finance: State-of-the-art and future prospects. IEEE Trans. Quantum Eng. 1, 1–24 (2020). https://doi.org/10.1109/TQE.2020.3030314

    Article  Google Scholar 

  105. Ryan, S., et al.: Stochastic gradient descent for hybrid quantum-classical optimization. Quantum (2020). https://doi.org/10.22331/q-2020-08-31-314

    Article  Google Scholar 

  106. Szegedy, C., Toshev, A., Erhan, D.: Deep neural networks for object detection. Presented at the Proceedings of the 26th International Conference on Neural Information Processing Systems, vol. 2, Lake Tahoe, Nevada (2013)

  107. Vedran, D., Jacob, M.T., Hans, J.B.: Quantum-enhanced machine learning. Phys. Rev. Lett. 117(13), 130501 (2016). https://doi.org/10.1103/PhysRevLett.117.130501

    Article  MathSciNet  Google Scholar 

  108. Hochreiter, S.: The vanishing gradient problem during learning recurrent neural nets and problem solutions. Int. J. Uncertain. Fuzziness Knowl. Based Syst. 6(02), 107–116 (1998). https://doi.org/10.1142/S0218488598000094

    Article  MATH  Google Scholar 

  109. Arthur, P., Marco, C., Samson, W., Tyler, V., Andrew, T.S., Patrick, J.C.: Absence of barren plateaus in quantum convolutional neural networks. Phys. Rev. X (2021). https://doi.org/10.1103/physrevx.11.041011

    Article  Google Scholar 

Download references

Acknowledgements

This research was supported by the Ministry of Science and Technology of Taiwan, R.O.C., under grant MOST 111-2221-E-032-031.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chi-Yi Tsai.

Ethics declarations

Conflict of interest

The authors have no conflict of interest regarding the research method, results and funding. All data presented in this study are available in this article.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mishra, S., Tsai, CY. QSurfNet: a hybrid quantum convolutional neural network for surface defect recognition. Quantum Inf Process 22, 179 (2023). https://doi.org/10.1007/s11128-023-03930-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11128-023-03930-5

Keywords

Navigation