Skip to main content
Log in

Multicast-based multiparty remote state preparation of complex coefficient two-qubit states

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

The goal of this paper is to further study multi-party multicast quantum communication of arbitrary two-qubit states. We first construct 9-qubit entangled channel by Hadamard gates and controlled-NOT gates and then, propose a new deterministic four-party scheme for multicast-based remote state preparation of two different two-qubit states, where the different arbitrary complex coefficient two-qubit states are transmitted synchronously from one sender to two spatially separated receivers under the control of the supervisor. In order to meet the needs of communication in noisy environment, we propose another three-party scheme for multicast-based remote state preparation of special complex coefficient two-qubit states by using the eight-qubit partially entangled state as the quantum channel. Finally, we discuss the feasibility of physical experiment, the security and the control power of the controller of the presented schemes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data Availability

The data sets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.

References

  1. Horodecki, R., Horodecki, P., Horodecki, M., Horodecki, K.: Quantum entanglement. Rev. Mod. Phys. 81, 865–924 (2009)

    ADS  MathSciNet  MATH  Google Scholar 

  2. Ekert, A.K.: Quantum cryptography based on bells theorem. Phys. Rev. Lett. 67, 661 (1991)

    ADS  MathSciNet  MATH  Google Scholar 

  3. Huang, W.: Improved multiparty quantum key agreement in travelling mode. Sci. China. Phys. Mech. Astron. 59(12), 120311 (2016)

    Google Scholar 

  4. Bennett, C.H., Wiesner, S.J.: Communication via one- and two-particle operators on Einstein-Podolsky-Rosen states. Phys. Rev. Lett. 69, 2881 (1992)

    ADS  MathSciNet  MATH  Google Scholar 

  5. Liu, X.S., Long, G.L., Tong, D.M., Li, F.: General scheme for superdense coding between multiparties. Phys. Rev. A 65, 022304 (2002)

    ADS  Google Scholar 

  6. Liu, B.H., Hu, X.M., Huang, Y.F., et al.: Experimental demonstration of efficient superdense coding in the presence of non-Markovian noise. Europhys. Lett. 114, 10005 (2016)

    ADS  Google Scholar 

  7. Bennett, C.H., Brassard, G., Crepeau, C., et al.: Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels. Phys. Rev. Lett. 1993, 70 (1895)

    MATH  Google Scholar 

  8. Bouwmeester, D., Pan, J.W., Mattle, K., et al.: Experimental quantum teleportation. Nature 390, 575 (1997)

    ADS  MATH  Google Scholar 

  9. Peng, J.Y., He, Y.: Annular controlled teleportation. Int. J. Theor. Phys. 58, 3271 (2019)

    MathSciNet  MATH  Google Scholar 

  10. Long, G.L., Deng, F.G.: Secure direct communication with a quantum one-time pad. Phys. Rev. A 69, 052319 (2004)

    ADS  Google Scholar 

  11. Wang, C.: Multi-step quantum secure direct communication using multi-particle Green–Horne–Zeiliger state. Opt. Commun. 253(1), 15–20 (2005)

    ADS  Google Scholar 

  12. Peng, J.Y., Bai, M.Q., Mo, Z.W.: Bidirectional quantum states sharing. Int. J. Theor. Phys. 55, 2481–2489 (2016)

    MathSciNet  MATH  Google Scholar 

  13. Hillery, M., Buz̆ek, V., Berthiaume, A.: Quantum secret sharing. Phys. Rev. A 1999, 59 (1829)

    Google Scholar 

  14. Peng, J.Y., Bai, M.Q., Mo, Z.W.: Hierarchical and probabilistic quantum state sharing via a non-maximally entangled \(\langle \chi \rangle \) state. Chin. Phys. B 23, 010304 (2014)

    ADS  Google Scholar 

  15. Huelga, S.F., Vaccaro, J.A., Chefles, A., et al.: Quantum remote control: teleportation of unitary operations. Phys. Rev. A 63(4), 042303 (2001)

    ADS  MATH  Google Scholar 

  16. Peng, J.Y., He, Y.: Cyclic controlled remote implementation of partially unknown quantum operations. Int. J. Theor. Phys. 58, 3065–3072 (2019)

    MathSciNet  MATH  Google Scholar 

  17. Wang, A.M.: Remote implementations of partially unknown quantum operations of multiqubits. Phys. Rev. A 74(3), 396–401 (2006)

    MathSciNet  Google Scholar 

  18. Peng, J.Y., Bai, M.Q., Mo, Z.W.: Multicharacters remote rotation sharing with five-particle cluster state. Quantum Inf. Process. 18, 339 (2019)

    ADS  MathSciNet  MATH  Google Scholar 

  19. Ye, B.L., Liu, Y.M., Liu, X.S., et al.: Remotely sharing a single-qubit operation with a five-qubit genuine state. Chin. Phys. Lett. 30(2), 020301 (2013)

    ADS  MathSciNet  Google Scholar 

  20. Lo, H.K.: Classical-communication cost in distributed quantum-information processing: a generalization of quantum-communication complexity. Phys. Rev. A 62, 012313 (2000)

    ADS  Google Scholar 

  21. Peng, J.Y., Bai, M.Q., Mo, Z.W.: Joint remote state preparation of arbitrary two-particle states via GHZ-type states. Quantum Inf. Process. 12, 2325–2342 (2013)

    ADS  MathSciNet  MATH  Google Scholar 

  22. Nguyen, B.A., Kim, J.: Joint remote state preparation. J. Phys. B At. Mol. Opt. Phys. 41, 095501 (2008)

    ADS  Google Scholar 

  23. Peng, J.Y., Luo, M.X., Mo, Z.W., et al.: Flexible deterministic joint remote state preparation of some states. Int. J. Quantum Inf. 11, 1350044 (2013)

    MathSciNet  MATH  Google Scholar 

  24. Shukla, C., Thapliyal, K., Pathak, A.: Hierarchical joint remote state preparation in noisy environment. Quantum Inf. Process. 16, 205 (2017)

    ADS  MathSciNet  MATH  Google Scholar 

  25. Peng, J.Y., Bai, M.Q., Mo, Z.W.: Joint remote state preparation of a four-dimensional quantum state. Chin. Phys. Lett. 31, 010301 (2014)

    ADS  Google Scholar 

  26. Zhang, D., Zha, X.W., Duan, Y., et al.: Deterministic controlled bidirectional remote state preparation via a six-qubit entangled state. Quantum Inf. Process. 15, 2169 (2016)

    ADS  MathSciNet  MATH  Google Scholar 

  27. Peng, J.Y., Bai, M.Q., Mo, Z.W.: Bidirectional controlled joint remote state preparation. Quantum Inf. Process. 14, 4263–4278 (2015)

    ADS  MathSciNet  MATH  Google Scholar 

  28. Peng, J.Y., Luo, M.X., Mo, Z.W.: Remote informatiom concentration via four-particle cluster state and by positive operator-value measurement. Int. J. Modern Phys. B 27, 1350091 (2013)

    ADS  MATH  Google Scholar 

  29. Peng, J.Y., Bai, M.Q., Mo, Z.W.: Remote information concentration by W state. Int. J. Modern Phys. B 27, 1350137 (2013)

    ADS  MathSciNet  MATH  Google Scholar 

  30. Peng, J.Y., Bai, M.Q., Mo, Z.W.: Remote information concentration via W state: reverse of ancilla-free phase-covariant telecloning. Quantum Inf. Process. 12, 3511–3525 (2013)

    ADS  MathSciNet  MATH  Google Scholar 

  31. Bennett, C.H., Brassard, G., Popescu, S., Schumacher, B., Smolin, J.A.K., Wootters, W.: Purification of noisy entanglement and faithful teleportation via noisy channels. Phys. Rev. Lett. 76, 722 (1996)

    ADS  Google Scholar 

  32. Sheng, Y.B., Deng, F.G.: Deterministic entanglement purification and complete nonlocal Bell-state analysis with hyperentanglement. Phys. Rev. A 81, 032307 (2010)

    ADS  Google Scholar 

  33. Zhou, L., Sheng, Y.B.: Purification of logic-qubit entanglement. Sci. Rep. 6, 28813 (2016)

    ADS  Google Scholar 

  34. Bouwmeester, D., Mattle, K., Pan, J.W., et al.: Experimental quantum teleportation of arbitrary quantum states. Appl. Phys. B Lasers Opt. 67(6), 749–752 (1998)

    ADS  Google Scholar 

  35. Agrawal, P., Pati, A.: Perfect teleportation and superdense coding with \(W\) states. Phys. Rev. A 74, 062320 (2006)

    ADS  Google Scholar 

  36. Roy, S., Ghosh, B.: A revisit to non-maximally entangled mixed states: Teleportation withness, noisy channel and discord. Quantum Inf. Process. 16(4), 108 (2017)

    ADS  MATH  Google Scholar 

  37. Joy, D., Sabir, M.: Efficient schemes for the quantum teleportation of a sub-class of tripartite entangled states. Quantum Inf. Process. 17(7), 170 (2018)

    ADS  MathSciNet  MATH  Google Scholar 

  38. Jiang, L.N.: Quantum teleportation under different collective noise environment. Int. J. Theor. Phys. 58(2), 522–530 (2019)

    MATH  Google Scholar 

  39. Bennett, C.H., DiVincenzo, D., Shor, P., et al.: Remote state preparation. Phys. Rev. Lett. 87(7), 077902 (2001)

    ADS  Google Scholar 

  40. Devetak, I., Berger, T.: Low-entanglement remote state preparation. Phys. Rev. Lett. 87, 197901 (2001)

    ADS  Google Scholar 

  41. Nguyen, B.A., Cao, T.B., Nung, V.D.: Joint remote preparation of four-qubit cluster-type states revisited. J. Phys. B At. Mol. Opt. Phys. 44, 135506 (2011)

    Google Scholar 

  42. Liang, H.Q., Liu, J.M., Feng, S.S., et al.: Effects of noises on joint remote state preparation via a GHZ-class channel. Quantum Inf. Process. 14, 3857 (2015)

    ADS  MathSciNet  MATH  Google Scholar 

  43. Mikami, H., Kobayashi, T.: Remote preparation of qutrit states with biphotons. Phys. Rev. A 75, 022325 (2007)

    ADS  Google Scholar 

  44. Wei, J., Shi, L., Zhu, Y., et al.: Deterministic remote preparation of arbitrary multi-qubit equatorial states via two-qubit entangled states. Quantum Inf. Process. 17, 70 (2018)

    ADS  MathSciNet  MATH  Google Scholar 

  45. Wang, D., Hu, Y.D., Wang, Z.Q., Ye, L.: Efficient and faithful remote preparation of arbitrary three- and four-particle W-class entangled states. Quantum Inf. Process. 14, 2135 (2015)

    ADS  MATH  Google Scholar 

  46. Kurucz, Z., Adam, P., Kis, Z., Janszky, J.: Continuous variable remote state preparation. Phys. Rev. A 72, 052315 (2005)

    ADS  Google Scholar 

  47. Shukla, C., Thapliyal, K., Pathak, A.: Hierarchical joint remote state preparation in noisy environment. Quantum Inf. Process. 16, 205 (2017)

    ADS  MathSciNet  MATH  Google Scholar 

  48. Xiang, G.Y., Li, J., Yu, B., Guo, G.C.: Remote preparation of mixed states via noisy entanglement. Phys. Rev. A 72, 012315 (2005)

    ADS  Google Scholar 

  49. Jeffrey, E., Peters, N.A., Kwiat, P.G.: Towards a periodic deterministic source of arbitrary single-photon states. New J. Phys. 6, 100 (2004)

    ADS  Google Scholar 

  50. Wu, W., Liu, W.T., Ou, B.Q., et al.: Remote state preparatation with classically correlated state. Opt. Commun. 281, 1751 (2008)

    ADS  Google Scholar 

  51. Barreiro, J.T., Wei, T.C., Kwiat, P.G.: Remote preparatation of single-photon hybrid entangled and vector-polarization states. Phys. Rev. Lett. 105, 030407 (2010)

    ADS  Google Scholar 

  52. SaiToh, A., Rahimi, R., et al.: Economical \((k, m)\)-threshold controlled quantum teleportation. Phys. Rev. A 79(6), 062313 (2009)

    ADS  MathSciNet  Google Scholar 

  53. Zhang, D., Zha, X.W., Li, W., Yu, Y.: Bidirectional and asymmetric quantum controlled teleportation via maximally eight-qubit entangled state. Quantum Inf. Process. 14, 3835–3844 (2015)

    ADS  MathSciNet  MATH  Google Scholar 

  54. Zhang, Z.J.: Controlled teleportation of an arbitrary n-qubit quantum information using quantum secret sharing of classical message. Phys. Lett. A 352, 55–58 (2006)

    ADS  MATH  Google Scholar 

  55. Chen, Y.X., Du, J., Liu, S.Y., et al.: Cyclic quantum teleportation. Quantum Inf. Process. 16(8), 1–9 (2017)

    ADS  MathSciNet  MATH  Google Scholar 

  56. Wang, Z.Y., Song, J.F.: Controlled remote prepartion of a two-qubit state via positive operator-valued measure and two three-qubit entanglements. Int. J. Theor. Phys. 50, 2410 (2011)

    MATH  Google Scholar 

  57. Liu, L.L., Hwang, T.: Controlled remote state preparation protocols via AKLT states. Quantum Inf. Process. 13, 1639 (2014)

    ADS  MathSciNet  MATH  Google Scholar 

  58. Wang, X., Mo, Z.W.: Bidirectional controlled joint remote state preparation via a seven-qubit entangled state. Int. J. Theor. Phys. 56, 1052 (2017)

    MATH  Google Scholar 

  59. Peng, J.Y., Xiang, Y.: Bidirectional remote state preparation in noisy environment assisted by weak measurement. Opt. Commun. 499, 127285 (2021)

    Google Scholar 

  60. Sang, M.H., Nie, Y.Y.: Deterministic tripartite controlled remote state preparation. Int. J. Theor. Phys. 56(10), 3092–3095 (2017)

    MATH  Google Scholar 

  61. Zha, X.W., Yu, X.Y., Cao, Y.: Tripartite controlled remote state preparation via a seven-qubit entangled state and three auxiliary particles. Int. J. Theor. Phys. 58, 282–293 (2019)

    MATH  Google Scholar 

  62. Peng, J.Y., Lei, H.X.: Cyclic remote state preparation. Int. J. Theor. Phys. 60(8), 1593–1602 (2021)

    MathSciNet  MATH  Google Scholar 

  63. Sang, Z.W.: Cyclic controlled joint remote preparation by using a ten-qubit entangled state. Int. J. Theor. Phys. 58, 255–260 (2019)

    MATH  Google Scholar 

  64. Zhang, C.Y., Bai, M.Q., Zhou, S.Q.: Cyclic joint remote state preparation in noisy environment. Quantum Inf. Process. 17, 146 (2018)

    ADS  MathSciNet  MATH  Google Scholar 

  65. Sun, S.Y., Zhang, H.S.: Quantum double-direction cyclic controlled communication via a thirteen-qubit entangled state. Quantum Inf. Process. 19, 120 (2020)

    ADS  MathSciNet  MATH  Google Scholar 

  66. Sun, S.Y., Zhang, H.S.: Double-direction quantum cyclic controlled remote state preparation of two-qubit states. Quantum Inf. Process. 20, 211 (2021)

    ADS  MathSciNet  MATH  Google Scholar 

  67. Jiang, S.X., Zhou, R.G., Xu, R.Q., et al.: Cyclic hybrid double-channel quantum communication via Bell-state and GHZ-state in noisy environments. IEEE Acces 7, 80530–80541 (2019)

    Google Scholar 

  68. Yu, Y., Zhao, N.: General quantum broadcast and multi-cast communications based on entanglement. Optics Express 26(22), 29296–29310 (2018)

    ADS  Google Scholar 

  69. Yu, Y., Zhao, N., Pei, C.X.: Multicast-based multiparty remote state preparation schemes of two-qubit states. Quantum Inf. Process. 18, 319 (2019)

    ADS  MathSciNet  MATH  Google Scholar 

  70. Li, X.H., Ghose, S.: Control power in perfect controlled teleportation via partially entangled channels. Phys. Rev. A 90, 052305 (2014)

    ADS  Google Scholar 

  71. Li, X.H., Ghose, S.: Analysis of control power in controlled remote state preparation schemes. Int. J. Theor. Phys. 56, 667–677 (2017)

    MATH  Google Scholar 

  72. Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information. Cambridge University Press, Cambridge (2000)

    MATH  Google Scholar 

  73. Acín, A., Latorre, J.I., Pascual, P.: Optimal generalized quantum measurements for arbitrary spin systems. Phys. Rev. A 61, 022113 (2000)

    ADS  Google Scholar 

  74. Badziag, P., Horodecki, M., Horodecki, P., Horodecki, R.: Local environment can enhance fidelity of quantum teleportation. Phys. Rev. A 62, 012311 (2000)

    ADS  Google Scholar 

  75. Ikram, M., Zhu, S.Y., Zubairy, M.S.: Quantum teleportation of an entangled state. Phys. Rev. A 62, 022307 (2000)

    ADS  MathSciNet  Google Scholar 

  76. Riebe, M., et al.: Deterministic quantum teleportation with atoms. Nature 429, 734 (2004)

    ADS  Google Scholar 

  77. Boschi, D., Branca, S., Martini, F.D., Hardy, L., Popescu, S.: Experimental realization of teleporting an unknown pure quantum state via dual classical and Einstein-Podolsky-Rosen channels. Phys. Rev. Lett. 80, 1121 (1998)

    ADS  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

This work is supported by the National Natural Science Foundation of China (Grant No. 11671284), Sichuan Science and Technology Program (Grant No. 2020YFG0290).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Liang Tang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Peng, Jy., Yang, Z., Tang, L. et al. Multicast-based multiparty remote state preparation of complex coefficient two-qubit states. Quantum Inf Process 22, 141 (2023). https://doi.org/10.1007/s11128-023-03888-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11128-023-03888-4

Keywords

Navigation