Skip to main content
Log in

Walking on vertices and edges by continuous-time quantum walk

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

The quantum walk dynamics obey the laws of quantum mechanics with an extra locality constraint, which demands that the evolution operator is local in the sense that the walker must visit the neighboring locations before endeavoring to distant places. Usually, the Hamiltonian is obtained from either the adjacency or the Laplacian matrix of the graph and the walker hops from vertices to neighboring vertices. In this work, we define a version of the continuous-time quantum walk that allows the walker to hop from vertices to edges and vice versa. As an application, we analyze the spatial search algorithm on the complete bipartite graph by modifying the new version of the Hamiltonian with an extra term that depends on the location of the marked vertex or marked edge, similar to what is done in the standard continuous-time quantum walk model. We show that the optimal running time to find either a vertex or an edge is \(O(\sqrt{N_\textrm{e}})\) with success probability \(1-o(1)\), where \(N_\textrm{e}\) is the number of edges of the complete bipartite graph.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data Availability

All data generated or analyzed during this study are included in this published article.

References

  1. Aharonov, Y., Davidovich, L., Zagury, N.: Quantum random walks. Phys. Rev. A 48, 1687–1690 (1993)

    Article  ADS  Google Scholar 

  2. Portugal, R.: Quantum Walks and Search Algorithms, 2nd edn. Springer, Cham (2018)

    Book  MATH  Google Scholar 

  3. Aharonov, D., Ambainis, A., Kempe, J., Vazirani, U.: Quantum walks on graphs. In: Proceedings of the 33th STOC, pp. 50–59. ACM, New York (2001)

  4. Farhi, E., Gutmann, S.: Quantum computation and decision trees. Phys. Rev. A 58, 915–928 (1998)

    Article  ADS  MathSciNet  Google Scholar 

  5. Portugal, R., Santos, R.A.M., Fernandes, T.D., Gonçalves, D.N.: The staggered quantum walk model. Quantum Inf. Process. 15(1), 85–101 (2016)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  6. Higuchi, Y., Konno, N., Sato, I., Segawa, E.: Spectral and asymptotic properties of Grover walks on crystal lattices. J. Funct. Anal. 267(11), 4197–4235 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  7. Szegedy, M.: Quantum speed-up of Markov chain based algorithms. In: 45th Annual IEEE Symposium on Foundations of Computer Science, pp. 32–41 (2004)

  8. Matsue, K., Ogurisu, O., Segawa, E.: Quantum walks on simplicial complexes. Quantum Inf. Process. 15(5), 1865–1896 (2016)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  9. Zhan, H.: Quantum walks on embeddings. J. Algebr. Comb. 53(4), 1187–1213 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  10. Childs, A.M., Goldstone, J.: Spatial search by quantum walk. Phys. Rev. A 70, 022314 (2004)

    Article  ADS  Google Scholar 

  11. Shenvi, N., Kempe, J., Whaley, K.B.: A quantum random walk search algorithm. Phys. Rev. A 67(5), 052307 (2003)

    Article  ADS  Google Scholar 

  12. Delvecchio, M., Groiseau, C., Petiziol, F., Summy, G.S., Wimberger, S.: Quantum search with a continuous-time quantum walk in momentum space. J. Phys. B At. Mol. Opt. Phys. 53(6), 065301 (2020)

    Article  ADS  Google Scholar 

  13. Wang, K., Shi, Y., Xiao, L., Wang, J., Joglekar, Y.N., Xue, P.: Experimental realization of continuous-time quantum walks on directed graphs and their application in PageRank. Optica 7(11), 1524–1530 (2020)

    Article  ADS  Google Scholar 

  14. Benedetti, C., Tamascelli, D., Paris, M.G.A., Crespi, A.: Quantum spatial search in two-dimensional waveguide arrays. Phys. Rev. Appl. 16, 054036 (2021)

    Article  ADS  Google Scholar 

  15. Qu, D., Marsh, S., Wang, K., Xiao, L., Wang, J., Xue, P.: Deterministic search on star graphs via quantum walks. Phys. Rev. Lett. 128, 050501 (2022)

    Article  ADS  MathSciNet  Google Scholar 

  16. Gao, X., Luo, Y., Liu, W.: Kirchhoff index in line, subdivision and total graphs of a regular graph. Discrete Appl. Math. 160(4), 560–565 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  17. Li, Y., Gu, R., Lei, H.: The generalized connectivity of the line graph and the total graph for the complete bipartite graph. Appl. Math. Comput. 347, 645–652 (2019)

    MathSciNet  MATH  Google Scholar 

  18. Zhao, Shu-Li., Hao, Rong-Xia., Wei, C.: Internally disjoint trees in the line graph and total graph of the complete bipartite graph. Appl. Math. Comput. 422, 126990 (2022)

    MathSciNet  MATH  Google Scholar 

  19. Dündar, P., Aytaç, A.: Integrity of total graphs via certain parameters. Math. Notes 76(5), 665–672 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  20. Cvetković, D.M.: Spectrum of the total graph of a graph. Publ. l’Inst. Math. 16(30), 49–52 (1973)

    MathSciNet  MATH  Google Scholar 

  21. Liu, X., Wang, Q.: Laplacian state transfer in total graphs. Discrete Math. 344(1), 112139 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  22. Hazama, F.: On the kernels of the incidence matrices of graphs. Discrete Math. 254, 165–174 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  23. Akbari, S., Ghareghani, N., Khosrovshahi, G., Maimani, H.: The kernels of the incidence matrices of graphs revisited. Linear Algebra Appl. 414, 617–625 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  24. Abreu, A., Cunha, L., de Figueiredo, C., Marquezino, F., Posner, D., Portugal, R.: Total tessellation cover and quantum walk. arXiv:2002.08992 (2020)

  25. Cvetković, D., Rowlinson, P., Simić, S.: An Introduction to the Theory of Graph Spectra. London Mathematical Society Student Texts, Cambridge University Press, Cambridge (2009)

    Book  MATH  Google Scholar 

  26. Cvetković, D.: Spectra of graphs formed by some unary operations. Publ. l’Inst. Math. 19(33), 37–41 (1975)

    MathSciNet  MATH  Google Scholar 

  27. Lugão, P.H.G., Portugal, R., Sabri, M., Tanaka, H.: Multimarked spatial search by continuous-time quantum walk. arXiv:2203.14384 (2022)

  28. Bezerra, G.A., Lugão, P.H.G., Portugal, R.: Quantum-walk-based search algorithms with multiple marked vertices. Phys. Rev. A 103, 062202 (2021)

    Article  ADS  MathSciNet  Google Scholar 

  29. Chan, A., Godsil, C., Tamon, C., Xie, W.: Of shadows and gaps in spatial search. arXiv:2204.04355 (2022)

  30. Tanaka, H., Sabri, M., Portugal, R.: Spatial search on Johnson graphs by continuous-time quantum walk. Quantum Inf. Process. 21(2), 74 (2022)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  31. Janmark, J., Meyer, D.A., Wong, T.G.: Global symmetry is unnecessary for fast quantum search. Phys. Rev. Lett. 112, 210502 (2014)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The work of C. F. T. da Silva was supported by CNPq Grant Number 141985/2019-4. The work of R. Portugal was supported by FAPERJ Grant Number CNE E-26/202.872/2018, and CNPq Grant Number 308923/2019-7. The authors have no competing interests to declare that are relevant to the content of this article.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Renato Portugal.

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Silva, C.F.T.d., Posner, D. & Portugal, R. Walking on vertices and edges by continuous-time quantum walk. Quantum Inf Process 22, 93 (2023). https://doi.org/10.1007/s11128-023-03842-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11128-023-03842-4

Keywords

Navigation