Skip to main content
Log in

Identifying quantum correlations using explicit SO(3) to SU(2) maps

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

Quantum state manipulation of two-qubits on the local systems by special unitaries induces special orthogonal rotations on the Bloch spheres. An exact formula is given for determining the local unitaries for some given rotation on the Bloch sphere. The solution allows for easy manipulation of two-qubit quantum states with a single definition that is programmable. With this explicit formula, modifications to the correlation matrix are made simple. Using our solution, it is possible to diagonalize the correlation matrix without solving for the parameters in SU(2) that define the local unitary that induces the special orthogonal rotation in SO(3). Since diagonalization of the correlation matrix is equivalent to diagonalization of the interaction Hamiltonian, manipulating the correlation matrix is important in time-optimal control of a two-qubit state. The relationship between orthogonality conditions on SU(2) and SO(3) is given and manipulating the correlation matrix when only one qubit can be accessed is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bennett, C.H., Brassard, G., Crépeau, C., Jozsa, R., Peres, A., Wootters, W.K.: Teleporting an unknown quantum state via dual classical and Einstein–Podolsky–Rosen channels. Phys. Rev. Lett. 70, 1895–1899 (1993). https://doi.org/10.1103/PhysRevLett.70.1895

    Article  ADS  MathSciNet  MATH  Google Scholar 

  2. Bennett, C.H., Wiesner, S.J.: Communication via one- and two-particle operators on Einstein–Podolsky–Rosen states. Phys. Rev. Lett. 69, 2881–2884 (1992). https://doi.org/10.1103/PhysRevLett.69.2881

    Article  ADS  MathSciNet  MATH  Google Scholar 

  3. Grover, L.K.: A fast quantum mechanical algorithm for database search. In: Proceedings of the Twenty-Eighth Annual ACM Symposium on Theory of Computing. STOC ’96, pp. 212–219. Association for Computing Machinery, New York, NY, USA (1996). https://doi.org/10.1145/237814.237866

  4. Shor, P.W.: Algorithms for quantum computation: discrete logarithms and factoring. In: Proceedings 35th Annual Symposium on Foundations of Computer Science, pp. 124–134 (1994). https://doi.org/10.1109/SFCS.1994.365700

  5. Parakh, A.: Quantum teleportation with one classical bit. Scientific Reports 12, 3392 (2022)https://doi.org/10.1038/s41598-022-06853-warXiv:2110.11254 [quant-ph]

  6. Cerf, N.J., Gisin, N., Massar, S.: Classical teleportation of a quantum bit. Phys. Rev. Lett. 84, 2521–2524 (2000). https://doi.org/10.1103/PhysRevLett.84.2521

    Article  ADS  Google Scholar 

  7. Gottesman, D., Chuang, I.L.: Demonstrating the viability of universal quantum computation using teleportation and single-qubit operations. Nature 402(6760), 390–393 (1999). https://doi.org/10.1038/46503

    Article  ADS  Google Scholar 

  8. Blume-Kohout, R.: Optimal, reliable estimation of quantum states. New J. Phys. 12(4), 043034 (2010). https://doi.org/10.1088/1367-2630/12/4/043034

    Article  ADS  MATH  Google Scholar 

  9. Li, M., Xue, G., Tan, X., Liu, Q., Dai, K., Zhang, K., Yu, H., Yu, Y.: Two-qubit state tomography with ensemble average in coupled superconducting qubits. Appl. Phys. Lett. 110(13), 132602 (2017). https://doi.org/10.1063/1.4979652

    Article  ADS  Google Scholar 

  10. Horodecki, R., Horodecki, P., Horodecki, M.: Violating bell inequality by mixed spin-12 states: necessary and sufficient condition. Phys. Lett. A 200(5), 340–344 (1995). https://doi.org/10.1016/0375-9601(95)00214-N

    Article  ADS  MathSciNet  MATH  Google Scholar 

  11. Hyllus, P., Gühne, O., Bruß, D., Lewenstein, M.: Relations between entanglement witnesses and bell inequalities. Phys. Rev. A 72, 012321 (2005). https://doi.org/10.1103/PhysRevA.72.012321

    Article  ADS  MathSciNet  Google Scholar 

  12. Zhang, T.-M., Wu, R.-B.: Minimum-time control of local quantum gates for two-qubit homonuclear systems. IFAC Proceedings Volumes 46(20), 359–364 (2013). https://doi.org/10.3182/20130902-3-CN-3020.00031. 3rd IFAC Conference on Intelligent Control and Automation Science ICONS 2013

  13. Khaneja, N., Brockett, R., Glaser, S.J.: Time optimal control in spin systems. Phys. Rev. A 63, 032308 (2001). https://doi.org/10.1103/PhysRevA.63.032308

    Article  ADS  Google Scholar 

  14. Cornwell, J.F.: Group Theory in Physics. Group Theory in Physics, vol. v. 2. Academic Press, Cambridge, Massachusetts (1984). https://books.google.com/books?id=bKQ7AQAAIAAJ

  15. Makhlin, Y.: Nonlocal properties of two-qubit gates and mixed states and optimization of quantum computations. Quantum Inf. Process. 1, 243–252 (2002). https://doi.org/10.1023/A:1022144002391

    Article  MathSciNet  Google Scholar 

  16. Hamilton, R.: On quaternions; or on a new system of imaginaries in algebra (1843)

  17. Euler, L.: Problema algebraicum ob affectiones prorsus singulares memorabile. Commentatio 407 indicis Enestrœmiani, Novi commentarii academiæ scientiarum Petropolitanæ 15(407), 75–106 (1771)

  18. Hall, B.: Lie Groups, Lie Algebras, and Representations: An Elementary Introduction, Graduate Texts in Mathematics, 2nd edn. Springer, New York (2015)

    Book  Google Scholar 

  19. Byrd, M.S., Bishop, C.A., Ou, Y.-C.: General open-system quantum evolution in terms of affine maps of the polarization vector. Phys. Rev. A 83, 012301 (2011). https://doi.org/10.1103/PhysRevA.83.012301

    Article  ADS  Google Scholar 

  20. Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information: 10th Anniversary Edition, 10th edn. Cambridge University Press, New York (2011)

    MATH  Google Scholar 

  21. Horn, R.A., Johnson, C.R.: Matrix Analysis. Cambridge University Press, New York, NY (2013)

    MATH  Google Scholar 

  22. Jevtic, S., Pusey, M., Jennings, D., Rudolph, T.: Quantum steering ellipsoids. Phys. Rev. Lett. 113, 020402 (2014). https://doi.org/10.1103/PhysRevLett.113.020402

    Article  ADS  Google Scholar 

  23. Bowles, J., Vértesi, T., Quintino, M.T., Brunner, N.: One-way Einstein–Podolsky–Rosen steering. Phys. Rev. Lett. 112, 200402 (2014). https://doi.org/10.1103/PhysRevLett.112.200402

    Article  ADS  Google Scholar 

  24. Nguyen, H.C., Gühne, O.: Quantum steering of bell-diagonal states with generalized measurements. Phys. Rev. A 101, 042125 (2020). https://doi.org/10.1103/PhysRevA.101.042125

    Article  ADS  Google Scholar 

  25. Sun, W.-Y., Wang, D., Shi, J.-D., Ye, L.: Exploration quantum steering, nonlocality and entanglement of two-qubit X-state in structured reservoirs. Sci Rep 7, 39651 (2017). https://doi.org/10.1038/srep39651

    Article  ADS  Google Scholar 

  26. Gheorghiu, A., Wallden, P., Kashefi, E.: Rigidity of quantum steering and one-sided device-independent verifiable quantum computation. New J. Phys. 19(2), 023043 (2017). https://doi.org/10.1088/1367-2630/aa5cff

    Article  ADS  Google Scholar 

Download references

Acknowledgements

Funding for this research was provided by the NSF, MPS under award number PHYS-1820870.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniel Dilley.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

1.1 A.1 Correlation matrices for the Bell states.

To determine the correlation matrix of any two-qubit density operator, simply perform the calculations \(\text {tr}({\hat{\sigma }}_i \otimes \hat{\sigma _j} \cdot \rho ) = \{{\mathcal {T}}_{\rho }\}_{ij}\). Using this formula, we can directly determine the correlation matrices for the maximally entangled Bell operators:

$$\begin{aligned} {\mathcal {T}}_{\Phi ^+}&=\ \left( \begin{array}{ccc} 1 &{} 0 &{} 0 \\ 0 &{} -1 &{} 0 \\ 0 &{} 0 &{} 1 \end{array} \right) \quad {\mathcal {T}}_{\Phi ^-} =\ \left( \begin{array}{ccc} -1 &{} 0 &{} 0 \\ 0 &{} 1 &{} 0 \\ 0 &{} 0 &{} 1 \end{array} \right) \end{aligned}$$
(44)
$$\begin{aligned} {\mathcal {T}}_{\Psi ^+}&=\ \left( \begin{array}{ccc} 1 &{} 0 &{} 0 \\ 0 &{} 1 &{} 0 \\ 0 &{} 0 &{} -1 \end{array} \right) \quad {\mathcal {T}}_{\Psi ^-} =\ \left( \begin{array}{ccc} -1 &{} 0 &{} 0 \\ 0 &{} -1 &{} 0 \\ 0 &{} 0 &{} -1 \end{array} \right) . \end{aligned}$$
(45)

1.2 A.2 Proof of equation (30)

Let us now calculate each part of Eq. (30) case by case. Note that for all these cases \(\alpha _1=0\) as seen from Eq. (18).

Case 1: \(\text {sgn}(\alpha _2)\text {sgn}(\beta _1)\text {sgn}(\beta _2) \ne 0\)

$$\begin{aligned} W({\mathcal {O}},|L_1|,|L_2|,|L_3|) = \eta _1\left( \begin{array}{cc} i \alpha _2 &{} \beta _1+i \beta _2 \\ -\beta _1 + i \beta _2 &{} -i \alpha _2 \end{array} \right) \end{aligned}$$
(46)

where \(\eta _1 = \text {sgn}(\alpha _2)\text {sgn}(\beta _1)\text {sgn}(\beta _2)\).

Case 2: \(\text {sgn}(\alpha _2) = 0 \; \text {and} \; \text {sgn}(\beta _1)\text {sgn}(\beta _2) \ne 0\)

$$\begin{aligned} W({\mathcal {O}},{\mathbb {I}},{\mathbb {I}},-|L_1|) = \eta _2\left( \begin{array}{cc} -i|\alpha _2|\eta _2 &{} \beta _1 + i \beta _2 \\ -\beta _1 + i \beta _2 &{} i|\alpha _2|\eta _2 \end{array} \right) \end{aligned}$$
(47)

where \(\eta _2 = -\text {sgn}(\beta _1)\). Since \(\text {sgn}(\alpha _2) = 0\) implies that \(\alpha _2 = 0\), this form is correct. The \(\eta _2\) only adds a ± global phase. We also see that

$$\begin{aligned} (1-\gamma _1)\gamma _2\gamma _3 = (1-\text {sgn}(\alpha _2 \beta _1)^2)(1-\text {sgn}(\alpha _2 \beta _2)^2)\text {sgn}(\beta _1 \beta _2)^2 \end{aligned}$$
(48)

which can be expressed in cases as

$$\begin{aligned} (1-\gamma _1)\gamma _2\gamma _3 = {\left\{ \begin{array}{ll} 1 &{}\text { if } \text {sgn}(\alpha _2) = 0 \; \text {and} \; \text {sgn}(\beta _1)\text {sgn}(\beta _2) \ne 0 \\ 0 &{}\text { otherwise} \end{array}\right. }. \end{aligned}$$
(49)

Case 3: \( \text {sgn}(\beta _1) = 0 \; \& \; \text {sgn}(\alpha _2)\text {sgn}(\beta _2) \ne 0\)

$$\begin{aligned} W({\mathcal {O}},-|L_2|,{\mathbb {I}},{\mathbb {I}}) = \eta _3\left( \begin{array}{cc} i\alpha _2 &{} -|\beta _1| \eta _3 + i \beta _2 \\ |\beta _1| \eta _3 + i \beta _2 &{} -i\alpha _2 \end{array} \right) \end{aligned}$$
(50)

where \(\eta _3 = -\text {sgn}(\beta _2)\). Since \(\text {sgn}(\beta _1) = 0\) implies that \(\beta _1 = 0\), this form is correct. The \(\eta _3\) only adds a ± global phase. We also see that

$$\begin{aligned} \gamma _1(1-\gamma _2)\gamma _3 = (1-\text {sgn}(\alpha _2 \beta _1)^2)(1-\text {sgn}(\beta _1 \beta _2)^2)\text {sgn}(\alpha _2 \beta _2)^2 \end{aligned}$$
(51)

which can be expressed in cases as

$$\begin{aligned} \gamma _1(1-\gamma _2)\gamma _3 = {\left\{ \begin{array}{ll} 1 &{}\text { if } \text {sgn}(\beta _1) = 0 \; \text {and} \; \text {sgn}(\alpha _2)\text {sgn}(\beta _2) \ne 0 \\ 0 &{}\text { otherwise} \end{array}\right. }. \end{aligned}$$
(52)

Case 4: \( \text {sgn}(\beta _2) = 0 \; \& \; \text {sgn}(\alpha _2)\text {sgn}(\beta _1) \ne 0\)

$$\begin{aligned} W({\mathcal {O}},{\mathbb {I}},-|L_3|,{\mathbb {I}}) = \eta _4\left( \begin{array}{cc} i\alpha _2 &{} \beta _1 - i |\beta _2| \eta _4 \\ -\beta _1 - i |\beta _2| \eta _4 &{} -i\alpha _2 \end{array} \right) \end{aligned}$$
(53)

where \(\eta _4 = -\text {sgn}(\alpha _2)\). Since \(\text {sgn}(\beta _2) = 0\) implies that \(\beta _2 = 0\), this form is correct. The \(\eta _4\) only adds a ± global phase. We also see that

$$\begin{aligned} \gamma _1 \gamma _2 (1-\gamma _3) = (1-\text {sgn}(\alpha _2 \beta _2)^2)(1-\text {sgn}(\beta _1 \beta _2)^2)\text {sgn}(\alpha _2 \beta _1)^2 \end{aligned}$$
(54)

which can be expressed in cases as

$$ \begin{aligned} \gamma _1 \gamma _2 (1-\gamma _3) = {\left\{ \begin{array}{ll} 1 &{}\text { if } \text {sgn}(\beta _2) = 0 \; \& \; \text {sgn}(\alpha _2)\text {sgn}(\beta _1) \ne 0 \\ 0 &{}\text { otherwise} \end{array}\right. }. \end{aligned}$$
(55)
$$ \begin{aligned} {\textbf {Case 5: }} \text {sgn}(\alpha _2) \ne 0 \; \& \; \text {sgn}(\beta _1),\text {sgn}(\beta _2) = 0 \nonumber \\ {\textbf {Case 6: }} \text {sgn}(\beta _1) \ne 0 \; \& \; \text {sgn}(\alpha _2),\text {sgn}(\beta _2) = 0 \nonumber \\ {\textbf {Case 7: }} \text {sgn}(\beta _2) \ne 0 \; \& \; \text {sgn}(\alpha _2),\text {sgn}(\beta _1) = 0 \end{aligned}$$
(56)
$$\begin{aligned} W({\mathcal {O}},-{\mathbb {I}},-{\mathbb {I}},-{\mathbb {I}}) = \left( \begin{array}{cc} i|\alpha _2| &{} |\beta _1| + i |\beta _2| \\ -|\beta _1| + i |\beta _2| &{} -i|\alpha _2| \end{array} \right) . \end{aligned}$$
(57)

Since only one of the elements of \(\{\alpha _2, \beta _1, \beta _2\}\) are nonzero, this form is correct. The missing sign is only a ± global phase. We also see that

$$\begin{aligned} \gamma _1\gamma _2\gamma _3 = (1-\text {sgn}(\alpha _2 \beta _1)^2)(1-\text {sgn}(\alpha _2 \beta _2)^2)(1-\text {sgn}(\beta _1 \beta _2)^2) \end{aligned}$$
(58)

which can be expressed in cases as

$$ \begin{aligned} \gamma _1\gamma _2\gamma _3 = {\left\{ \begin{array}{ll} 1 &{}\text { if } \text {sgn}(\alpha _2),\text {sgn}(\beta _1),\text {sgn}(\beta _2) = 0 \\ &{}\text { if } \text {sgn}(\alpha _2),\text {sgn}(\beta _1) = 0 \; \& \; \text {sgn}(\beta _2) \ne 0 \\ &{}\text { if } \text {sgn}(\alpha _2),\text {sgn}(\beta _2) = 0 \; \& \; \text {sgn}(\beta _1) \ne 0 \\ &{}\text { if } \text {sgn}(\beta _1),\text {sgn}(\beta _2) = 0 \; \& \; \text {sgn}(\alpha _2) \ne 0 \\ 0 &{}\text { otherwise} \end{array}\right. }, \end{aligned}$$
(59)

which completes the rest of the cases involved when \(\text {tr}({\mathcal {O}}) = -1\). The \(\gamma \) functions ensure that there are no repeats of any solutions in Eq. (30). Now we can safely say that all of the 8 possible cases described by Eq. (32) have been proven. Case 8 is when \(\text {tr}({\mathcal {O}}) \ne -1\) and it has been proven in Eq. (20).

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dilley, D., Gonzales, A. & Byrd, M. Identifying quantum correlations using explicit SO(3) to SU(2) maps. Quantum Inf Process 21, 343 (2022). https://doi.org/10.1007/s11128-022-03679-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11128-022-03679-3

Keywords

Navigation