Skip to main content
Log in

Realistic continuous-variable quantum teleportation using a displaced Fock state channel

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

We investigate ideal and non-ideal continuous-variable quantum teleportation protocols realized by using an entangled displaced Fock state resource. The characteristic function formulation is applied to measure the relative performance of displaced Fock state for teleporting squeezed and coherent states. It is found that for such single-mode input fields, the average fidelity remains at the classical threshold, suggesting that the displaced Fock states are not advantageous for teleportation. We also discuss the major decoherence effects, caused by the inaccuracy in Bell measurements and photon losses for the propagation of optical fields via fibre channels. The changes in the teleportation fidelity are described by adjusting the gain factor (g), reflectivity (R), mode damping (\(\tau \)), and the number of thermal photons (\(n_\mathrm {th}\)). The possibility of successful teleportation can be optimized by fixing these realistic parameters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data availability statement

Data will be made available on reasonable request.

References

  1. Wunsche, A.: Displaced Fock states and their connection to quasiprobabilities. Quant. Opt. 3, 359 (1991)

    Article  ADS  MathSciNet  Google Scholar 

  2. Moya-Cessa, H., Knight, P.L.: Series representation of quantum-field quasiprobabilities. Phys. Rev. A 48, 2479 (1993)

    Article  ADS  Google Scholar 

  3. Dutra, S.M., Knight, P.L., Moya-Cessa, H.: Large-scale fluctuations in the driven Jaynes-Cummings model. Phys. Rev. A 49, 1993 (1994)

    Article  ADS  Google Scholar 

  4. Alsing, P., Guo, D.-S., Carmichael, H.: Dynamic Stark effect for the Jaynes-Cummings system. Phys. Rev. A 45(7), 5135 (1992)

    Article  ADS  Google Scholar 

  5. Cahill, K.E., Glauber, R.J.: Ordered expansions in boson amplitude operators. Phys. Rev. 177, 1857 (1969)

    Article  ADS  Google Scholar 

  6. Cahill, K.E., Glauber, R.J.: Density operators and quasiprobability distributions. Phys. Rev. 177, 1882 (1969)

    Article  ADS  Google Scholar 

  7. Boiteux, M., Levelut, A.: Semicoherent states. J. Phys. A: Math. Nucl. Gen. 6, 589 (1973)

    Article  ADS  Google Scholar 

  8. Roy, S.M., Singh, V.: Generalized coherent states and the uncertainty principle. Phy J. Rev. D 25, 3413 (1982)

    Article  ADS  MathSciNet  Google Scholar 

  9. Satyanarayana, M.V.: Generalized coherent states and generalized squeezed coherent states. Phys. Rev. D 32, 400 (1985)

    Article  ADS  MathSciNet  Google Scholar 

  10. de Oliveira, F. A. M., Kim, M.S., Knight, P.L., Buiek, V.: Properties of displaced number states. Phys. Rev. A 41, 2645 (1990)

    Article  ADS  Google Scholar 

  11. Lo, C.: Generating displaced and squeezed number states by a general driven time-dependent oscillator. Phys. Rev. A 43(1), 404 (1991)

    Article  ADS  MathSciNet  Google Scholar 

  12. Marchiolli, M.A., José, W.D.: Engineering superpositions of displaced number states of a trapped ion. Physica A 337(1–2), 89–108 (2004)

    Article  ADS  Google Scholar 

  13. Podoshvedov, S.A.: Extraction of displaced number states. J. Opt. Soc. Am. B 31, 2491 (2014)

    Article  ADS  Google Scholar 

  14. Ziesel, F., et al.: Experimental creation and analysis of displaced number states. J. Phys. B: At. Mol. Opt. Phys. 46, 104008 (2013)

    Article  ADS  Google Scholar 

  15. Malpani, P., Thapliyal, K., Alam, N., Pathak, A., Narayanan, V., Banerjee, S.: Impact of photon addition and subtraction on nonclassical and phase properties of a displaced Fock state. Ann. Phys. (Berlin) 11, 1900141 (2019)

    Article  Google Scholar 

  16. Quintero, W., Ladera, C.L.: Teleportation of displaced Fock states: fidelity and their teleported photon number distributions. J. of Phys. 274, 012146 (2011)

    Google Scholar 

  17. Dell’Anno, F., De Siena, S., Illuminati, F.: Multiphoton quantum optics and quantum state engineering. Phys. Rep. 428, 53 (2006)

    Article  ADS  MathSciNet  Google Scholar 

  18. Kim, M.S., Son, W., Bušek, V., Knight, P.L.: Entanglement by a beam splitter: nonclassicality as a prerequisite for entanglement. Phys. Rev. A 65, 032323 (2002)

    Article  ADS  Google Scholar 

  19. Kitagawa, A., Takeoka, M., Sasaki, M., Chefles, A.: Entanglement evaluation of non-Gaussian states generated by photon subtraction from squeezed states. Phys. Rev. A 73, 042310 (2006)

    Article  ADS  Google Scholar 

  20. Dodonov, V.V., de Souza, L.A.: Decoherence of superpositions of displaced number states. J. Opt. B: Quantum Semiclass. Opt. 7, S490 (2005)

    Article  ADS  Google Scholar 

  21. Cerf, N.J., Krüger, O., Navez, P., Werner, R.F., Wolf, M.M.: Non-Gaussian cloning of quantum coherent states is optimal. Phys. Rev. Lett. 95, 070501 (2005)

    Article  ADS  Google Scholar 

  22. Adesso, G., Dell’Anno, F., De Siena, S., Illuminati, F., Souza, L.A.M.: Optimal estimation of losses at the ultimate quantum limit with non-Gaussian states. Phys. Rev. A 79, 040305(R) (2009)

    Article  ADS  Google Scholar 

  23. Bennett, C.H., Brassard, G., Crepeau, C., Jozsa, R., Peres, A., Wootters, W.K.: Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels. Phys. Rev. Lett. 70, 1895 (1993)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  24. Bouwmeester, D., Pan, J.W., Mattle, K., Eibl, M., Weinfurter, H., Zeilinger, A.: Experimental quantum teleportation. Nature London 390, 575 (1997)

    Article  ADS  MATH  Google Scholar 

  25. Boschi, D., Branca, S., De Martini, F., Hardy, L., Popescu, S.: Experimental realization of teleporting an unknown pure quantum state via dual classical and Einstein-Podolsky-Rosen Channels. Phys. Rev. Lett. 80, 1121 (1998)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  26. Vaidman, L.: Teleportation of quantum states. Phys. Rev. A 49, 1473 (1994)

    Article  ADS  Google Scholar 

  27. Braunstein, S.L., Kimble, H.J.: Teleportation of continuous quantum variables. Phys. Rev. Lett. 80, 869 (1998)

    Article  ADS  Google Scholar 

  28. Furusawa, A., Sørensen, J.L., Braunstein, S.L., Fuchs, C.A., Kimble, H.J., Polzik, E.S.: Unconditional quantum teleportation. Science 282, 706 (1998)

    Article  ADS  Google Scholar 

  29. Bowen, W. P., Treps, N., Buchler, B.C., Schnabel, R., Ralph, T.C., Bachor, Hans-A., Symul, T., Lam, P.K.: Experimental investigation of continuous-variable quantum teleportation. Phys. Rev. A 67, 032302 (2003)

    Article  ADS  Google Scholar 

  30. Takei, N., Yonezawa, H., Aoki, T., Furusawa, A.: High-fidelity teleportation beyond the no-cloning limit and entanglement swapping for continuous variables. Phys. Rev. Lett. 94, 220502 (2005)

    Article  ADS  Google Scholar 

  31. van Enk, S.J.: Discrete formulation of teleportation of continuous variables. Phys. Rev. A 60, 5095 (1999)

    Article  ADS  Google Scholar 

  32. Vukics, A., Janszky, J., Kobayashi, T.: Nonideal teleportation in coherent-state basis. Phys. Rev. A 66, 023809 (2000)

    Article  ADS  MathSciNet  Google Scholar 

  33. Hofmann, H.F., Ide, T., Kobayashi, T., Furusawa, A.: Fidelity and information in the quantum teleportation of continuous variables. Phys. Rev. A 62, 062304 (2000)

    Article  ADS  Google Scholar 

  34. Braunstein, S.L., van Loock, P.: Quantum information with continuous variables. Rev. Mod. Phys. 77, 513 (2005)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  35. Marian, P., Marian, T.A.: Continuous-variable teleportation in the characteristic-function description. Phys. Rev. A 74, 042306 (2006)

    Article  ADS  Google Scholar 

  36. Dell’Anno, F., De Siena, S., Albano, L., Illuminati, F.: Continuous-variable quantum teleportation with non-Gaussian resources. Phys. Rev. A 76, 022301 (2007)

    Article  ADS  Google Scholar 

  37. Dell’Anno, F., De Siena, S., Illuminati, F.: Realistic continuous-variable quantum teleportation with non-Gaussian resources. Phys. Rev. A 81, 012333 (2010)

    Article  ADS  Google Scholar 

  38. Ping, Y.-X., Zhang, B., Cheng, Z., Xu, Q.: Two-mode entanglement via superpositions of two-mode coherent states. Mod. Phys. Lett. B 21, 1253 (2007)

    Article  ADS  MATH  Google Scholar 

  39. Dhar, H.S., Chatterjee, A., Ghosh, R.: Generating continuous variable entangled states for quantum teleportation using a superposition of number-conserving operations. J. Phys. B: At. Mol. Opt. Phys 48, 185502 (2015)

  40. Leonhardt, U., Paul, H.: Realistic optical homodyne measurements and quasiprobability distributions. Phys. Rev. A 48, 4598 (1993)

    Article  ADS  Google Scholar 

  41. Gupta, S.C., Kapoor, V.K.: Fundamentals of Mathematical Statistics. SC & Sons, New Delhi (2018)

    Google Scholar 

  42. Moll, V.H.: Special integrals of Gradshteyn and Ryzhik the proofs, vol. II. Chapman and Hall/CRC, UK (2015)

    Book  MATH  Google Scholar 

Download references

Acknowledgements

Deepak acknowledges support from the Council of Scientific and Industrial Research (CSIR), Govt. of India (Award no. 09/1256(0006)/2019-EMR-1).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arpita Chatterjee.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix A. Details of Gaussian integration

Appendix A. Details of Gaussian integration

Here, we outline the description of the Gaussian integration in detail.

$$\begin{aligned} I= & {} \int dx\,dy\,\exp (a_1x^2+a_2y^2+a_3xy+a_4x+a_5y)L_m[a(x^2+y^2)]\nonumber \\&\quad \times L_n[b(x^2+y^2)]\nonumber \\= & {} \sum _{p,q=0}^{m,n} \frac{(-a)^p(-b)^q m!n!}{p!^2q!^2(m-p)!(n-q)!}\nonumber \\&\times \int {dx\,dy\,\exp (a_1x^2+a_2y^2+a_3xy+a_4x+a_5y)(x^2+y^2)^{p+q}}\nonumber \\= & {} \sum _{p,q,r=0}^{m,n,p+q} \frac{(-a)^p(-b)^q m!n!(p+q)!}{p!^2q!^2(m-p)!(n-q)! r!(p+q-r)!}\nonumber \\&\times \int {dx\,dy\,\exp (a_1x^2+a_2y^2+a_3xy+a_4x+a_5y)x^{2r}y^{2p+2q-2r}} \end{aligned}$$
(A.1)

Now, rearranging the parameters as \(\mu _x=\frac{2a_2a_4-a_3a_5}{4a_1a_2-a_3^2},~~\mu _y=\frac{2a_1a_5-a_3a_4}{4a_1a_2-a_3^2},\rho =-\frac{a_3}{2\sqrt{a_1a_2}},~~\sigma _x=\sqrt{-\frac{2a_2}{4a_1a_2-a_3^2}}, ~~\sigma _y=\sqrt{-\frac{2a_1}{4a_1a_2-a_3^2}},\,\,a_6=\frac{a_2a_4^2+a_1a_5^2-a_3a_4a_5}{4a_1a_2-a_3^2}\) and substituting \(x=\sigma _xz_1+\mu _x\) and \(y=\sigma _y(\rho z_1+\sqrt{1-\rho ^2}z_2) +\mu _y\), (\(z_1\) and \(z_2\) are standard normal variate) in (A.1), we obtain [41]

$$\begin{aligned} I e^{a_6}= & {} \sum _{p,q,r=0}^{m,n,p+q} \frac{(-a)^p(-b)^q m!n!(p+q)!}{p!^2q!^2(m-p)!(n-q)!r!(p+q-r)!}\\&\times \int {dx\,dy} \exp \bigg [-\frac{1}{2(1-\rho ^2)}\bigg \{\bigg (\frac{x-\mu _x}{\sigma _x}\bigg )^2+\bigg (\frac{y-\mu _y}{\sigma _y}\bigg )^2\\&- \frac{2\rho }{\sigma _x\sigma _y}\bigg (\frac{x-\mu _x}{\sigma _x}\bigg ) \bigg (\frac{y-\mu _y}{\sigma _y}\bigg )\bigg \}\bigg ]x^{2r}y^{2p+2q-2r}\\= & {} \sum _{p,q,r=0}^{m,n,p+q} \frac{(-a)^p(-b)^qm!n!(p+q)!}{p!^2q!^2(m-p)!(n-q)!r!(p+q-r)!}\sqrt{1-\rho ^2}\sigma _x\sigma _y\\&\times \sum _{s,t,u=0}^{2r,2p+2q-2r,t}{2r\atopwithdelims ()s}{2p+2q-2r\atopwithdelims ()t}{t\atopwithdelims ()u}\mu _x^{2r-s}\mu _y^{2p+2q-2r-t}\\&\times \sigma _x^{s}\sigma _y^{t}\rho ^{t-u}(1-\rho ^2)^{u/2}\int e^{-\frac{1}{2}(z_1^2+z_2^2)}z_1^{s+t-u}z_2^{u}dz_1dz_2\\= & {} \left\{ \begin{array}{lcl} \sum _{p,q,r=0}^{m,n,p+q} \frac{(-a)^p(-b)^qm!n!{{p+q}\atopwithdelims ()r}}{p!^2q!^2(m-p)!(n-q)!}\sqrt{1-\rho ^2}\sigma _x\sigma _y \sum _{s,t,u=0}^{2r,2p+2q-2r,t}{2r\atopwithdelims ()s}{2p+2q-2r\atopwithdelims ()t}\\ \times {t\atopwithdelims ()u}\mu _x^{2r-s}\mu _y^{2p+2q-2r-t}\sigma _x^{s} \sigma _y^{t}\rho ^{t-u}(1-\rho ^2)^{u/2}2^{\frac{s+t}{2}+1}\, \Gamma \left( \frac{s+t-u+1}{2}\right) \Gamma \left( \frac{u+1}{2}\right) ,\\ \text {if both } s+t\text { and } u\text { are even}\\ \\ 0,\,\,\,\,\, \text {otherwise} \end{array} \right. \end{aligned}$$

by using [42]

$$\begin{aligned} \int {dx\,e^{-ax^b}x^n} = \left\{ \begin{array}{lll} \frac{2\,\Gamma [(n+1)/b]}{b\,a^\frac{n+1}{b}},\,\,\,\text {if } n\text { is even}\\ \\ 0, \,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\text {otherwise} \end{array} \right. \end{aligned}$$
(A.2)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Deepak, Chatterjee, A. Realistic continuous-variable quantum teleportation using a displaced Fock state channel. Quantum Inf Process 21, 145 (2022). https://doi.org/10.1007/s11128-022-03484-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11128-022-03484-y

Keywords

Navigation