Skip to main content
Log in

Entanglement and separability of graph Laplacian quantum states

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

In this article, we study the entanglement properties of multi-qubit quantum states using a graph-theoretic approach. For this, we define entanglement and separability for m-qubit quantum states associated with a weighted graph on \(2^m\) vertices. We further explore the properties of a block graph and a star graph to demonstrate criteria for entanglement and separability of these graphs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Data Availability statement

All data generated or analyzed during this study are included in this published article.

Abbreviations

1. \(||x ||\) :

Absolute value of x= (\(\sqrt{x {\bar{x}}}\)).

2. \({\mathrm{Tr}}(A)\) :

Trace of a matrix A.

2. \({\mathrm{det}}(A)\) :

Determinant of a matrix A.

4. D(G):

The degree matrix of (Ga).

5. \({\rho _G}^{PT}\) :

Partial transpose of the density operator of a graph G.

6. \({\bar{\rho _G}}^{PT}\) :

Conjugate partial transpose of the density operator of a graph G.

7. \(A^*\) :

Conjugate transpose of A.

8. \(|{E(G)}|\) :

Number of edges in G.

References

  1. Adhikari, B., Banerjee, S., Adhikari, S., Kumar, A.: Laplacian matrices of weighted digraphs represented as quantum states. Quantum Inf. Process. 16(3), 79 (2017)

    Article  ADS  MathSciNet  Google Scholar 

  2. Bennett, C.H., DiVincenzo, D.P., Smolin, J.A., Wootters, W.K.: Mixed-state entanglement and quantum error correction. Phys. Rev. A 54(5), 3824 (1996)

    Article  ADS  MathSciNet  Google Scholar 

  3. Berkolaiko, G., Kuchment, P.: Introduction to Quantum Graphs. Number 186. American Mathematical Society (2013)

  4. Braunstein, S.L., Ghosh, S., Mansour, T., Severini, S., Wilson, R.C.: Some families of density matrices for which separability is easily tested. Phys. Rev. A 73(1), 012320 (2006)

    Article  ADS  Google Scholar 

  5. Braunstein, S.L., Ghosh, S., Severini, S.: The Laplacian of a graph as a density matrix: a basic combinatorial approach to separability of mixed states. Ann. Comb. 10(3), 291–317 (2006)

    Article  MathSciNet  Google Scholar 

  6. Bruss, D., Leuchs, G.: Quantum Information: From Foundations to Quantum Technology Applications. Wiley, New York (2019)

    MATH  Google Scholar 

  7. Coffman, V., Kundu, J., Wootters, W.K.: Distributed entanglement. Phys. Rev. A 61(5), 052306 (2000)

    Article  ADS  Google Scholar 

  8. Dür, W., Aschauer, H., Briegel, H.-J.: Multiparticle entanglement purification for graph states. Phys. Rev. Lett. 91(10), 107903 (2003)

    Article  ADS  MathSciNet  Google Scholar 

  9. Dür, W., Vidal, G., Cirac, J.I.: Three qubits can be entangled in two inequivalent ways. Phys. Rev. A 62(6), 062314 (2000)

    Article  ADS  MathSciNet  Google Scholar 

  10. Dutta, S., Adhikari, B., Banerjee, S.: A graph theoretical approach to states and unitary operations. Quantum Inf. Process. 15(5), 2193–2212 (2016)

    Article  ADS  MathSciNet  Google Scholar 

  11. Dutta, S.: Bipartite separability and nonlocal quantum operations on graphs. Phys. Rev. A 94(1), 012306 (2016)

    Article  ADS  Google Scholar 

  12. Eisert, J., Plenio, M.B.: Introduction to the basics of entanglement theory in continuous-variable systems. Int. J. Quantum Inf. 1(04), 479–506 (2003)

    Article  Google Scholar 

  13. Hall, B.C.: Quantum Theory for Mathematicians, vol. 267. Springer, Berlin (2013)

    Book  Google Scholar 

  14. Hall, M.J.W.: Random quantum correlations and density operator distributions. Phys. Lett. A 242(3), 123–129 (1998)

    Article  ADS  MathSciNet  Google Scholar 

  15. Hassan, A.S.M., Joag, P.S.: A combinatorial approach to multipartite quantum systems: basic formulation. J. Phys. A Math. Theor. 40(33), 10251 (2007)

    Article  ADS  MathSciNet  Google Scholar 

  16. Hildebrand, R., Mancini, S., Severini, S.: Combinatorial Laplacians and positivity under partial transpose. Math. Struct. Comput. Sci. 18(1), 205–219 (2008)

    Article  MathSciNet  Google Scholar 

  17. Horodecki, M., Horodecki, P., Horodecki, R.: Separability of n-particle mixed states: necessary and sufficient conditions in terms of linear maps. Phys. Lett. A 283(1–2), 1–7 (2001)

    Article  ADS  MathSciNet  Google Scholar 

  18. Horodecki, R., Horodecki, P., Horodecki, M., Horodecki, K.: Reviews of modern physics. Quantum Entangl 81(2), 865 (2009)

    MATH  Google Scholar 

  19. Hou, Q.-H., Mansour, T., Severini, S.: Partial transposes of permutation matrices. Integers Electron J Combin Number Theory 8(A49), A49 (2008)

    MathSciNet  MATH  Google Scholar 

  20. Joshi, A., Singh, R., Kumar, A.: Concurrence and three-tangle of the graph. Quantum Inf. Process. 17(12), 327 (2018)

    Article  ADS  MathSciNet  Google Scholar 

  21. Lohmayer, R., Osterloh, A., Siewert, J., Uhlmann, A.: Entangled three-qubit states without concurrence and three-tangle. Phys. Rev. Lett. 97(26), 260502 (2006)

    Article  ADS  MathSciNet  Google Scholar 

  22. Meenakshi, A.R., Rajian, C.: On a product of positive semidefinite matrices. Linear Algebra Appl. 295(1–3), 3–6 (1999)

    Article  MathSciNet  Google Scholar 

  23. Milivojević, M.: Maximal thermal entanglement using three-spin interactions. Quantum Inf. Process. 18(2), 1–14 (2019)

    Article  MathSciNet  Google Scholar 

  24. Newman, M.W.: The Laplacian spectrum of graphs (2001)

  25. Nielsen, M.A., Chuang, I.: Quantum computation and quantum information (2002)

  26. Nielsen, M.A., Chuang, I.L.: Quantum computation and quantum information (2000)

  27. Rigolin, G.: Superdense coding using multipartite states. arXiv:hep/0407193 (2004)

  28. Rigolin, G.: Quantum teleportation of an arbitrary two-qubit state and its relation to multipartite entanglement. Phys. Rev. A 71(3), 032303 (2005)

    Article  ADS  MathSciNet  Google Scholar 

  29. Wang, B.-Y., Gong, M.-P.: Some eigenvalue inequalities for positive semidefinite matrix power products. Linear Algebra Appl. 184, 249–260 (1993)

    Article  MathSciNet  Google Scholar 

  30. Wang, X., Wilde, M.M.: Cost of quantum entanglement simplified. Phys. Rev. Lett. 125(4), 040502 (2020)

    Article  ADS  MathSciNet  Google Scholar 

  31. Werner, R.F.: Quantum states with Einstein–Podolsky–Rosen correlations admitting a hidden-variable model. Phys. Rev. A 40(8), 4277 (1989)

    Article  ADS  Google Scholar 

  32. West, D.B., et al.: Introduction to Graph Theory, vol. 2. Prentice Hall, Upper Saddle River (2001)

    Google Scholar 

  33. Wilson, R.J.: Introduction to Graph Theory. Pearson Education, New York (1979)

    MATH  Google Scholar 

  34. Wootters, W.K.: Entanglement of formation of an arbitrary state of two qubits. Phys. Rev. Lett. 80(10), 2245 (1998)

    Article  ADS  Google Scholar 

  35. Wootters, W.K.: Entanglement of formation and concurrence. Quantum Inf. Comput. 1(1), 27–44 (2001)

    MathSciNet  MATH  Google Scholar 

  36. Wu, P.Y.: Products of positive semidefinite matrices. Linear Algebra Appl. 111, 53–61 (1988)

    Article  MathSciNet  Google Scholar 

  37. Zhang, F., Zhang, Q.: Eigenvalue inequalities for matrix product. IEEE Trans. Autom. Control 51(9), 1506–1509 (2006)

    Article  ADS  MathSciNet  Google Scholar 

  38. Zhang, G.-F.: Thermal entanglement and teleportation in a two-qubit Heisenberg chain with Dzyaloshinski–Moriya anisotropic antisymmetric interaction. Phys. Rev. A 75(3), 034304 (2007)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The authors are grateful to Ranveer Singh and Satish Sangwan for their valuable comments and suggestions. The authors are also grateful to IIT Jodhpur for providing the research infrastructure. On behalf of all authors, the corresponding author states that there is no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Atul Kumar.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

1.1 A brief explanation of Examples (6) and (7)

  1. 1.

    Explanation of the example (6)

figure k

The density operator for the graph \(G_2\) can be represented as

$$\begin{aligned} \rho _{G_2}= \frac{1}{4} \left[ \begin{array}{rrrrrrrrrrrrrrrr} 1&{} 0&{}0&{}0&{}0&{}1&{}0&{}0&{}0&{}0&{}-1&{}0&{}0&{}0&{}0&{}-1\\ 0&{} 0&{}0&{}0&{}0&{}0&{}0&{}0&{}0&{}0&{}0&{}0&{}0&{}0&{}0&{}0\\ 0&{} 0&{}0&{}0&{}0&{}0&{}0&{}0&{}0&{}0&{}0&{}0&{}0&{}0&{}0&{}0\\ 0&{} 0&{}0&{}0&{}0&{}0&{}0&{}0&{}0&{}0&{}0&{}0&{}0&{}0&{}0&{}0\\ 0&{} 0&{}0&{}0&{}0&{}0&{}0&{}0&{}0&{}0&{}0&{}0&{}0&{}0&{}0&{}0\\ 1&{} 0&{}0&{}0&{}0&{}1&{}0&{}0&{}0&{}0&{}-1&{}0&{}0&{}0&{}0&{}-1\\ 0&{} 0&{}0&{}0&{}0&{}0&{}0&{}0&{}0&{}0&{}0&{}0&{}0&{}0&{}0&{}0\\ 0&{} 0&{}0&{}0&{}0&{}0&{}0&{}0&{}0&{}0&{}0&{}0&{}0&{}0&{}0&{}0\\ 0&{} 0&{}0&{}0&{}0&{}0&{}0&{}0&{}0&{}0&{}0&{}0&{}0&{}0&{}0&{}0\\ 0&{} 0&{}0&{}0&{}0&{}0&{}0&{}0&{}0&{}0&{}0&{}0&{}0&{}0&{}0&{}0\\ -1&{} 0&{}0&{}0&{}0&{}-1&{}0&{}0&{}0&{}0&{}1&{}0&{}0&{}0&{}0&{}1\\ 0&{}0&{}0&{}0&{}0&{}0&{}0&{}0&{}0&{}0&{}0&{}0&{}0&{}0&{}0&{}0\\ 0&{}0&{}0&{}0&{}0&{}0&{}0&{}0&{}0&{}0&{}0&{}0&{}0&{}0&{}0&{}0\\ 0&{}0&{}0&{}0&{}0&{}0&{}0&{}0&{}0&{}0&{}0&{}0&{}0&{}0&{}0&{}0\\ 0&{}0&{}0&{}0&{}0&{}0&{}0&{}0&{}0&{}0&{}0&{}0&{}0&{}0&{}0&{}0\\ -1&{} 0&{}0&{}0&{}0&{}-1&{}0&{}0&{}0&{}0&{}1&{}0&{}0&{}0&{}0&{}1 \end{array}\right] \end{aligned}$$

Using \(\rho _{G_2}\) , one can verify that \(\rho _{G_2} \ne {{\rho _{G_2}}}^{PT}\). Therefore, interchanging columns \(C_9\) with \(C_{11}\), and \(C_{14}\) with \(C_{16}\) and corresponding rows \(R_9\) with \(R_{11}\) and \(R_{14}\) with \(R_{16}\), we have

$$\begin{aligned}\rho _{G_2} \cong {\rho _{G_2}}'= \frac{1}{4} \left[ \begin{array}{rrrrrrrrrrrrrrrr} 1&{} 0&{}0&{}0&{}0&{}1&{}0&{}0&{}-1&{}0&{}0&{}0&{}0&{}-1&{}0&{}0\\ 0&{} 0&{}0&{}0&{}0&{}0&{}0&{}0&{}0&{}0&{}0&{}0&{}0&{}0&{}0&{}0\\ 0&{} 0&{}0&{}0&{}0&{}0&{}0&{}0&{}0&{}0&{}0&{}0&{}0&{}0&{}0&{}0\\ 0&{} 0&{}0&{}0&{}0&{}0&{}0&{}0&{}0&{}0&{}0&{}0&{}0&{}0&{}0&{}0\\ 0&{} 0&{}0&{}0&{}0&{}0&{}0&{}0&{}0&{}0&{}0&{}0&{}0&{}0&{}0&{}0\\ 1&{} 0&{}0&{}0&{}0&{}1&{}0&{}0&{}-1&{}0&{}0&{}0&{}0&{}-1&{}0&{}0\\ 0&{} 0&{}0&{}0&{}0&{}0&{}0&{}0&{}0&{}0&{}0&{}0&{}0&{}0&{}0&{}0\\ 0&{} 0&{}0&{}0&{}0&{}0&{}0&{}0&{}0&{}0&{}0&{}0&{}0&{}0&{}0&{}0\\ -1&{} 0&{}0&{}0&{}0&{}-1&{}0&{}0&{}1&{}0&{}0&{}0&{}0&{}1&{}0&{}0\\ 0&{} 0&{}0&{}0&{}0&{}0&{}0&{}0&{}0&{}0&{}0&{}0&{}0&{}0&{}0&{}0\\ 0&{} 0&{}0&{}0&{}0&{}0&{}0&{}0&{}0&{}0&{}0&{}0&{}0&{}0&{}0&{}0\\ 0&{}0&{}0&{}0&{}0&{}0&{}0&{}0&{}0&{}0&{}0&{}0&{}0&{}0&{}0&{}0\\ 0&{}0&{}0&{}0&{}0&{}0&{}0&{}0&{}0&{}0&{}0&{}0&{}0&{}0&{}0&{}0\\ -1&{}0&{}0&{}0&{}0&{}-1&{}0&{}0&{}1&{}0&{}0&{}0&{}0&{}1&{}0&{}0\\ 0&{}0&{}0&{}0&{}0&{}0&{}0&{}0&{}0&{}0&{}0&{}0&{}0&{}0&{}0&{}0\\ 0&{}0&{}0&{}0&{}0&{}0&{}0&{}0&{}0&{}0&{}0&{}0&{}0&{}0&{}0&{}0 \end{array}\right] . \end{aligned}$$

Here, we can see that blocks are symmetric, satisfying the Theorem 4.4. Hence, the state associated with the graph \(G_2\) is separable.

  1. 2.

    Explanation of the example (7)

figure l

Similar to the previous case, the density operator for the graph \(G_3\) is expressed as

$$\begin{aligned} \rho _{G_3}= \frac{1}{4} \left[ \begin{array}{rrrrrrrrrrrrrrrr} 1&{} 0&{}0&{}0&{}0&{}1&{}0&{}0&{}0&{}0&{}1&{}0&{}0&{}0&{}0&{}-1\\ 0&{} 0&{}0&{}0&{}0&{}0&{}0&{}0&{}0&{}0&{}0&{}0&{}0&{}0&{}0&{}0\\ 0&{} 0&{}0&{}0&{}0&{}0&{}0&{}0&{}0&{}0&{}0&{}0&{}0&{}0&{}0&{}0\\ 0&{} 0&{}0&{}0&{}0&{}0&{}0&{}0&{}0&{}0&{}0&{}0&{}0&{}0&{}0&{}0\\ 0&{} 0&{}0&{}0&{}0&{}0&{}0&{}0&{}0&{}0&{}0&{}0&{}0&{}0&{}0&{}0\\ 1&{} 0&{}0&{}0&{}0&{}1&{}0&{}0&{}0&{}0&{}1&{}0&{}0&{}0&{}0&{}-1\\ 0&{} 0&{}0&{}0&{}0&{}0&{}0&{}0&{}0&{}0&{}0&{}0&{}0&{}0&{}0&{}0\\ 0&{} 0&{}0&{}0&{}0&{}0&{}0&{}0&{}0&{}0&{}0&{}0&{}0&{}0&{}0&{}0\\ 0&{} 0&{}0&{}0&{}0&{}0&{}0&{}0&{}0&{}0&{}0&{}0&{}0&{}0&{}0&{}0\\ 0&{} 0&{}0&{}0&{}0&{}0&{}0&{}0&{}0&{}0&{}0&{}0&{}0&{}0&{}0&{}0\\ 1&{} 0&{}0&{}0&{}0&{}1&{}0&{}0&{}0&{}0&{}1&{}0&{}0&{}0&{}0&{}-1\\ 0&{}0&{}0&{}0&{}0&{}0&{}0&{}0&{}0&{}0&{}0&{}0&{}0&{}0&{}0&{}0\\ 0&{}0&{}0&{}0&{}0&{}0&{}0&{}0&{}0&{}0&{}0&{}0&{}0&{}0&{}0&{}0\\ 0&{}0&{}0&{}0&{}0&{}0&{}0&{}0&{}0&{}0&{}0&{}0&{}0&{}0&{}0&{}0\\ 0&{}0&{}0&{}0&{}0&{}0&{}0&{}0&{}0&{}0&{}0&{}0&{}0&{}0&{}0&{}0\\ -1&{} 0&{}0&{}0&{}0&{}-1&{}0&{}0&{}0&{}0&{}-1&{}0&{}0&{}0&{}0&{}1 \end{array}\right] , \end{aligned}$$

In this case, we can see that we cannot get the symmetric blocks by interchanging the columns and corresponding rows. Therefore, the state associated with the graph \(G_3\) is entangled.

1.2 Decomposition of the Laplacian matrix of a simple graph G

Every Laplacian matrix can be decomposed as a sum of Laplacian matrices of subgraphs (\(G_1\), \(G_2\), and \(G_3\)) of a graph G [24].

We have

$$\begin{aligned} L= \begin{bmatrix} \sum _{j=1}^{n} a_{1j}&{} -a_{12}&{} \ldots &{} -a_{1n}\\ -a_{21}&{} \sum _{j=1}^{n}a_{2j}&{} \ldots &{} -a_{2n}\\ \vdots &{} \vdots &{} \vdots &{} \vdots \\ -a_{n1}&{} -a_{n2}&{} \ldots &{}\sum _{j=1}^{n} a_{nj} \end{bmatrix}. \end{aligned}$$

It is easy to see that L(G) can be rewritten as

$$\begin{aligned} L= & {} \begin{bmatrix} \sum _{j=1}^{\frac{n}{2}} a_{1j} &{}-a_{12} &{} \ldots -a_{1\frac{n}{2}}&{} 0&{} 0&{} \ldots &{} 0\\ -a_{21} &{}\sum _{j=1}^{\frac{n}{2}} a_{2j} &{} \ldots -a_{2\frac{n}{2}}&{} 0&{} 0 &{} \ldots &{} 0\\ \vdots &{} \vdots &{} \vdots &{} \vdots &{} \vdots &{} \vdots \\ -a_{\frac{n}{2}1} &{} -a_{\frac{n}{2}2} &{} \ldots \sum _{j=1}^{\frac{n}{2}} a_{\frac{n}{2}j} &{} 0 &{} 0 &{} \ldots &{} 0\\ 0 &{} 0&{} \ldots &{} 0 &{} 0 &{} \ldots &{} 0\\ 0 &{} 0 &{} \ldots &{} 0 &{} 0 &{} \ldots &{} 0\\ \vdots &{} \vdots &{} \vdots &{} \vdots &{} \vdots &{} \vdots \\ 0 &{} 0 &{} \ldots &{} 0 &{} 0 &{} \ldots &{} 0 \end{bmatrix} \\&+\begin{bmatrix} 0 &{} 0 &{} \ldots 0 &{} 0&{} 0&{} \ldots &{} 0\\ 0 &{} 0 &{} \ldots 0 &{} 0&{} 0 &{} \ldots &{} 0\\ \vdots &{} \vdots &{} \vdots &{} \vdots &{} \vdots &{} \vdots \\ 0 &{} 0 &{} \ldots 0 &{} 0 &{} \ldots &{} 0\\ 0 &{} 0&{} \ldots &{}0&{} \sum _{ j=\frac{n}{2}+1 }^{n} a_{ \frac{n}{2}+1 j } &{} -a_{ \frac{n}{2}+1 \frac{n}{2}+2 } &{} \ldots &{} -a_{ \frac{n}{2}+1 n}\\ 0 &{} 0 &{} \ldots &{}0 &{} -a_{\frac{n}{2}+2 \frac{n}{2}+1} &{} \sum _{j=\frac{n}{2}+1}^{n} a_{\frac{n}{2}+2 j} &{} \ldots &{} -a_{\frac{n}{2}+2 n}\\ \vdots &{} \vdots &{} \vdots &{} \vdots &{} \vdots &{} \vdots \\ 0 &{} 0 &{} \ldots &{} 0 &{} -a_{n \frac{n}{2}+1} &{} -a_{n \frac{n}{2}+2} &{} \ldots &{}0 &{} \sum _{j=\frac{n}{2}+1}^{n} a_{n j} \end{bmatrix} \\&+ \begin{bmatrix} \sum _{j=\frac{n}{2}+1}^{n} a_{1j}&{} \ldots &{} 0&{}-a_{1 \frac{n}{2}+1 } &{} \ldots &{} -a_{1n}\\ \vdots &{} \vdots &{}\vdots &{} \vdots &{} \vdots &{} \vdots \\ 0&{} \ldots &{} \sum _{j=\frac{n}{2}+1}^{n} a_{\frac{n}{2}j}&{} -a_{ \frac{n}{2} \frac{n}{2}+1 } &{} \ldots &{} -a_{ \frac{n}{2}n}\\ -a_{\frac{n}{2}+1 1} &{} \ldots &{} -a_{ \frac{n}{2}+1 \frac{n}{2}} &{} \sum _{j=1}^{\frac{n}{2}} a_{\frac{n}{2}+1 j} &{} \ldots &{} 0\\ \vdots &{} \vdots &{}\vdots &{} \vdots &{} \vdots &{} \vdots \\ -a_{n1} &{} \ldots &{} -a_{n \frac{n}{2}} &{} 0 &{} \ldots &{} \sum _{j=1}^{\frac{n}{2}} a_{n j}\\ \end{bmatrix}. \end{aligned}$$

To summarize, \(L(G)=\begin{bmatrix} L_1&{}0\\ 0&{}0 \end{bmatrix}+ \begin{bmatrix} 0&{}0\\ 0&{}L_2 \end{bmatrix} + \begin{bmatrix} D_1&{}B_1\\ {B_2} &{}D_2 \end{bmatrix}\),

where \(L_1\) and \(L_2\) are also Laplacian of simple graphs and \(D_1\) and \(D_2\) are diagonal matrices with the i-th diagonal entry equals to the sum of absolute value of i-th row sum of \(B_1\) and \(B_2\).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Joshi, A., Singh, P. & Kumar, A. Entanglement and separability of graph Laplacian quantum states. Quantum Inf Process 21, 152 (2022). https://doi.org/10.1007/s11128-022-03483-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11128-022-03483-z

Keywords

Navigation