Apolloni, B., Carvalho, C., de Falco, D.: Quantum stochastic optimization. Stoch. Process. Their Appl. 33, 233 (1989)
MathSciNet
MATH
Google Scholar
Finnila, A., Gomez, M., Sebenik, C., Stenson, C., Doll, J.: Quantum annealing: a new method for minimizing multidimensional functions. Chem. Phys. Lett. 219, 343 (1994)
ADS
Google Scholar
Kadowaki, T., Nishimori, H.: Quantum annealing in the transverse Ising model. Phys. Rev. E 58, 5355 (1998)
ADS
Google Scholar
Brooke, J., Bitko, D., Rosenbaum, T.F., Aeppli, G.: Quantum annealing of a disordered magnet. Science 284, 779 (1999)
ADS
Google Scholar
Harris, R., Johnson, M.W., Lanting, T., Berkley, A.J., Johansson, J., Bunyk, P., Tolkacheva, E., Ladizinsky, E., Ladizinsky, N., Oh, T., Cioata, F., Perminov, I., Spear, P., Enderud, C., Rich, C., Uchaikin, S., Thom, M.C., Chapple, E.M., Wang, J., Wilson, B., Amin, M.H.S., Dickson, N., Karimi, K., Macready, B., Truncik, C.J.S., Rose, G.: Experimental investigation of an eight-qubit unit cell in a superconducting optimization processor. Phys. Rev. B 82, 024511 (2010)
ADS
Google Scholar
Johnson, M.W., Amin, M.H.S., Gildert, S., Lanting, T., Hamze, F., Dickson, N., Harris, R., Berkley, A.J., Johansson, J., Bunyk, P., Chapple, E.M., Enderud, C., Hilton, J.P., Karimi, K., Ladizinsky, E., Ladizinsky, N., Oh, T., Perminov, I., Rich, C., Thom, M.C., Tolkacheva, E., Truncik, C.J.S., Uchaikin, S., Wang, J., Wilson, B., Rose, G.: Quantum annealing with manufactured spins. Nature 473, 194 (2011)
ADS
Google Scholar
Bunyk, P.I., Hoskinson, E.M., Johnson, M.W., Tolkacheva, E., Altomare, F., Berkley, A.J., Harris, R., Hilton, J.P., Lanting, T., Przybysz, A.J., Whittaker, J.: Architectural considerations in the design of a superconducting quantum annealing processor. IEEE Trans. Appl. Supercond. 24, 1 (2014)
Google Scholar
Job, J., Lidar, D.: Test-driving 1000 qubits. Quantum Sci. Technol. 3, 030501 (2018)
ADS
Google Scholar
Hauke, P., Katzgraber, H.G., Lechner, W., Nishimori, H., Oliver, W.D.: Perspectives of quantum annealing: methods and implementations. Rep. Prog. Phys. 83, 054401 (2020)
ADS
Google Scholar
Nath, R.K., Thapliyal, H., Humble, T.S.: A review of machine learning classification using quantum annealing for real-world applications. SN Comput. Sci. 2, 365 (2021)
Google Scholar
McGeoch, C., Farré,P.: The D-wave advantage system: an overview, Tech. Rep. (D-Wave Systems Inc, Burnaby, BC, Canada, D-Wave Technical Report Series 14-1049A-A(2020)
McGeoch, C., Farré, P., Bernoudy, W.: D-wave hybrid solver service + advantage: technology update, Tech. Rep. (D-Wave Systems Inc, Burnaby, BC, Canada, D-Wave User Manual 09-1109A-V(2020)
D-Wave Systems: Technical description of the D-wave quantum processing unit, Tech. Rep. (D-Wave Systems Inc., Burnaby, BC, Canada, 2020) D-Wave User Manual 09-1109A-V
Boothby, K., Bunyk,P., Raymond, J., Roy, A.: Next-generation topology of D-wave quantum processors, arXiv:2003.00133 [quant-ph] (2020)
King, A.D., Bernoudy, W.: Performance benefits of increased qubit connectivity in quantum annealing 3-dimensional spin glasses, arXiv:2009.12479 [quant-ph] (2020)
Cohen, J., Alexander, C.: Picking efficient portfolios from 3,171 US common stocks with new quantum and classical solvers, arXiv:2011.01308 [quant-ph] (2020)
Kuramata, M., Katsuki, R., Nakata, K.: Larger sparse quadratic assignment problem optimization using quantum annealing and a bit-flip heuristic algorithm, arXiv:2012.10135 [quant-ph] (2020)
Calaza, C.D.G., Willsch, D., Michielsen, K.: Garden optimization problems for benchmarking quantum annealers, arXiv:2101.10827 [quant-ph] (2021)
Birdal, T., Golyanik,V., Theobalt, C., Guibas, L.: Quantum permutation synchronization, arXiv:2101.07755 [quant-ph] (2021)
Bhatia, H.S., Phillipson, F.: Performance analysis of support vector machine implementations on the D-wave quantum annealer. In: Paszynski, M., Kranzlmüller, D., Krzhizhanovskaya, V.V., Dongarra, J.J., Sloot, P.M.A. (eds.) Computational Science - ICCS. Springer International Publishing, Cham (2021)
Google Scholar
Fox, D.M., Branson, K.M.,Walker, R.C.: mRNA codon optimization on quantum computers, bioRxiv 10.1101/2021.02.19.431999 (2021)
Rahman, S.A.,Lewis, R.,Mendicelli, E.,Powell, S.: SU(2) lattice gauge theory on a quantum annealer, arXiv:2103.08661 [hep-lat] (2021)
Phillipson, F., Wezeman, R.S., Chiscop, I.: Indoor–outdoor detection in mobile networks using quantum machine learning approaches. Computers 10, 71 (2021)
Google Scholar
Willsch, M., Willsch, D., Jin, F., De Raedt, H., Michielsen, K.: Real-time simulation of flux qubits used for quantum annealing. Phys. Rev. A 101, 012327 (2020)
ADS
Google Scholar
Willsch, M.: Study of quantum annealing by simulating the time evolution of flux qubits, Ph.D. thesis, RWTH Aachen University, Aachen (2020a)
Boixo, S., Albash, T., Spedalieri, F.M., Chancellor, N., Lidar, D.A.: Experimental signature of programmable quantum annealing. Nat. Commun. 4, 2067 (2013)
ADS
Google Scholar
Albash, T., Rønnow, T., Troyer, M., Lidar, D.: Reexamining classical and quantum models for the D-Wave one processor. Eur. Phys. J. Spec. Top. 224, 111 (2015)
ADS
Google Scholar
Albash, T., Vinci, W., Mishra, A., Warburton, P.A., Lidar, D.A.: Consistency tests of classical and quantum models for a quantum annealer. Phys. Rev. A 91, 042314 (2015)
ADS
Google Scholar
Boixo, S., Smelyanskiy, V.N., Shabani, A., Isakov, S.V., Dykman, M., Denchev, V.S., Amin, M.H., Smirnov, A.Y., Mohseni, M., Neven, H.: Computational multiqubit tunnelling in programmable quantum annealers. Nat. Commun. 7, 10327 (2016)
ADS
Google Scholar
Marshall, J., Venturelli, D., Hen, I., Rieffel, E.G.: Power of pausing: advancing understanding of thermalization in experimental quantum annealers. Phys. Rev. Appl. 11, 044083 (2019)
ADS
Google Scholar
Boixo, S., Rønnow, T.F., Isakov, S.V., Wang, Z., Wecker, D., Lidar, D.A., Martinis, J.M., Troyer, M.: Evidence for quantum annealing with more than one hundred qubits. Nat. Phys. 10, 218 (2014)
Google Scholar
Rønnow, T.F., Wang, Z., Job, J., Boixo, S., Isakov, S.V., Wecker, D., Martinis, J.M., Lidar, D.A., Troyer, M.: Defining and detecting quantum speedup. Science 345, 420 (2014)
ADS
Google Scholar
Hall, J., Novotny, M., Neuhaus, T., Michielsen, K.: A study of spanning trees on a D-wave quantum computer. Phys. Proc. 68, 56 (2015)
ADS
Google Scholar
Hen, I., Job, J., Albash, T., Rønnow, T.F., Troyer, M., Lidar, D.A.: Probing for quantum speedup in spin-glass problems with planted solutions. Phys. Rev. A 92, 042325 (2015)
ADS
Google Scholar
McGeoch, C.C.: Benchmarking D-wave quantum annealing systems: some challenges, in Electro-Optical and Infrared Systems: Technology and Applications XII; and Quantum Information Science and Technology, Vol. 9648, edited by D. A. Huckridge, R. Ebert, M. T. Gruneisen, M. Dusek, and J. G. Rarity, International Society for Optics and Photonics (SPIE, 2015) pp. 264 – 273
Novotny, M., Hobl, Q.L., Hall, J., Michielsen, K.: Spanning tree calculations on D-wave 2 machines. J. Phys. Conf. Ser. 681, 012005 (2016)
Google Scholar
Li, R.Y., Di Felice, R., Rohs, R., Lidar, D.A.: Quantum annealing versus classical machine learning applied to a simplified computational biology problem. npj Quantum Inf. 4, 14 (2018)
ADS
Google Scholar
Willsch, M., Willsch, D., Jin, F., De Raedt, H., Michielsen, K.: Benchmarking the quantum approximate optimization algorithm. Quantum Inf. Process. 19, 197 (2020)
ADS
MathSciNet
Google Scholar
Willsch, D., Willsch, M., De Raedt, H., Michielsen, K.: Support vector machines on the D-Wave quantum annealer. Comput. Phys. Commun. 248, 107006 (2020)
MathSciNet
Google Scholar
Cavallaro, G., Willsch, D., Willsch, M., Michielsen,K., Riedel, M.: Approaching remote sensing image classification with ensembles of support vector machines on the D-wave quantum annealer, in IGARSS 2020 - 2020 IEEE International Geoscience and Remote Sensing Symposium (2020) pp. 1973–1976
Domino, K., Koniorczyk, M., Krawiec, K., Jałowiecki, K., Gardas, B.: Quantum computing approach to railway dispatching and conflict management optimization on single-track railway lines, arXiv:2010.08227 [cs.ET] ( 2021)
Mugel, S., Kuchkovsky, C., Sanchez, E., Fernandez-Lorenzo, S., Luis-Hita, J., Lizaso, E., Orus, R.: Dynamic portfolio optimization with real datasets using quantum processors and quantum-inspired tensor networks, arXiv:2007.00017 [quant-ph] (2020)
Grozea, C., Hans, R., Koch, M., Riehn, C., Wolf, A.: Optimising rolling stock planning including maintenance with constraint programming and quantum annealing, arXiv:2109.07212 [cs.AI] ( 2021)
Karp, R.M.: Reducibility among combinatorial problems, in Complexity of Computer Computations: Proceedings of a symposium on the Complexity of Computer Computations, held March 20–22, 1972, at the IBM Thomas J. Watson Research Center, Yorktown Heights, New York, and sponsored by the Office of Naval Research, Mathematics Program, IBM World Trade Corporation, and the IBM Research Mathematical Sciences Department, edited by R. E. Miller, J. W. Thatcher, and J. D. Bohlinger Springer US, Boston, MA, 1972) pp. 85–103
Farhi, E., Goldstone, J., Gutmann, S., Lapan, J., Lundgren, A., Preda, D.: A quantum adiabatic evolution algorithm applied to random instances of an NP-complete problem. Science 292, 472 (2001)
ADS
MathSciNet
MATH
Google Scholar
Choi, V.: Adiabatic quantum algorithms for the NP-complete maximum-weight independent set, exact cover and 3SAT problems, arXiv:1004.2226 [quant-ph] (2010)
Lucas, A.: Ising formulations of many NP problems. Front. Phys. 2, 5 (2014)
Google Scholar
Cao, Y., Jiang, S., Perouli, D., Kais, S.: Solving set cover with pairs problem using quantum annealing. Sci. Rep. 6, 33957 (2016)
ADS
Google Scholar
Sax, I., Feld, S., Zielinski, S., Gabor, T., Linnhoff-Popien,C., Mauerer, W.: Approximate approximation on a quantum annealer, in Proceedings of the 17th ACM International Conference on Computing Frontiers, CF ’20 ( Association for Computing Machinery, New York, NY, USA, 2020) pp. 108–117
Farhi, E., Goldstone, J., Gutmann, S.: A quantum approximate optimization algorithm, arXiv:1411.4028 [quant-ph] ( 2014)
Vikstål, P., Grönkvist, M., Svensson, M., Andersson, M., Johansson, G., Ferrini, G.: Applying the quantum approximate optimization algorithm to the tail-assignment problem. Phys. Rev. Appl. 14, 034009 (2020)
ADS
Google Scholar
Bengtsson, A., Vikstål, P., Warren, C., Svensson, M., Gu, X., Kockum, A.F., Krantz, P., Križan, C., Shiri, D., Svensson, I.-M., Tancredi, G., Johansson, G., Delsing, P., Ferrini, G., Bylander, J.: Improved success probability with greater circuit depth for the quantum approximate optimization algorithm. Phys. Rev. Appl. 14, 034010 (2020)
ADS
Google Scholar
Svensson, M., Andersson, M., Grönkvist, M., Vikstål, P., Dubhashi, D., Ferrini, G., Johansson, G.: A heuristic method to solve large-scale integer linear programs by combining branch-and-price with a quantum algorithm, arXiv:2103.15433 [quant-ph] (2021)
Willsch, D., Willsch, M., Jin, F., Michielsen, K., De Raedt, H.: GPU-accelerated simulations of quantum annealing and the quantum approximate optimization algorithm, arXiv:2104.03293 [quant-ph] ( 2021)
Grönkvist, M.: The tail assignment problem, Ph.D. thesis, Chalmers University of Technology and Göteborg University (2005)
Ernst, A., Jiang, H., Krishnamoorthy, M., Sier, D.: Staff scheduling and rostering: a review of applications, methods and models. Eur. J. Oper. Res 153, 3 (2004)
MathSciNet
MATH
Google Scholar
Tahir, A., Desaulniers, G., El Hallaoui, I.: Integral column generation for the set partitioning problem. EURO J. Transp. Logist. 8, 713 (2019)
Google Scholar
Stollenwerk,T., Lobe, E., Jung, M.: Flight gate assignment with a quantum annealer. In: Quantum Technology and Optimization Problems. Springer International Publishing, pp. 99–110 (2019)
Stollenwerk, T., O’Gorman, B., Venturelli, D., Mandrà, S., Rodionova, O., Ng, H., Sridhar, B., Rieffel, E.G., Biswas, R.: Quantum annealing applied to de-conflicting optimal trajectories for air traffic management. IEEE Trans. Intell. Transp. Syst. 21, 285 (2020)
Google Scholar
Martins, L.: Applying quantum annealing to the tail assignment problem, Ph.D. thesis, University of Porto (2020)
D-Wave Systems, D-wave solver properties and parameters, Tech. Rep. ( D-Wave Systems Inc., Burnaby, BC, Canada, 2021) D-Wave User Manual 09-1169A-S
D-Wave Systems, D-Wave Problem-Solving Handbook, Tech. Rep. ( D-Wave Systems Inc., Burnaby, BC, Canada, 2020) D-Wave User Manual 09-1171A-G
Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, New York (2010)
MATH
Google Scholar
D-Wave Systems, D-Wave Ocean SDK, (2020c), https://github.com/dwavesystems/dwave-ocean-sdk, release 2.5.0
Desrosiers, J., Lübbecke, M.E.: A primer in column generation. In: Desaulniers, G., Desrosiers, J., Solomon, M.M. (eds.) Column Generation. Springer, Boston (2005)
MATH
Google Scholar
Barnhart, C., Johnson, E.L., Nemhauser, G.L., Savelsbergh, M.W.P., Vance, P.H.: Branch-and-price: column generation for solving huge integer programs. Op. Res. 46, 316 (1998)
MathSciNet
MATH
Google Scholar
Born, M., Fock, V.: Beweis des Adiabatensatzes. Z. Phys. 51, 165 (1928)
ADS
MATH
Google Scholar
D-Wave Systems, Solver Computation Time, Tech. Rep. ( D-Wave Systems Inc., Burnaby, BC, Canada, 2021) D-Wave User Manual 09-1107B-A
De Raedt, H., Michielsen, K., Hams, A., Miyashita, S., Saito, K.: Quantum spin dynamics as a model for quantum computer operation. Eur. Phys. J. B 27, 15 (2002)
ADS
Google Scholar
Willsch, D.: Supercomputer simulations of transmon quantum computers, Ph.D. thesis, RWTH Aachen University, Aachen (2020b)
Willsch, D., Nocon, M., Jin, F., De Raedt, H., Michielsen, K.: Gate-error analysis in simulations of quantum computers with transmon qubits. Phys. Rev. A 96, 062302 (2017)
ADS
Google Scholar
Lagemann, H., Willsch, D., Willsch, M., Jin, F., De Raedt, H., Michielsen, K.: Numerical analysis of effective models for flux-tunable transmon systems, in preparation (2021)
Xu, X., Ansari, M.: \(ZZ\) freedom in two-qubit gates. Phys. Rev. Appl. 15, 064074 (2021)
ADS
Google Scholar
D-Wave Systems: D-Wave NetworkX, (2021c), https://github.com/dwavesystems/dwave-networkx