Skip to main content
Log in

Multipartite mixed maximally entangled states: mixed states with entanglement 1

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

We present a full definition of mixed maximally entangled (MME) states for multipartite systems, generalizing their existing definition for bipartite systems by using multipartite Schmidt decomposition and deriving a set of necessary and sufficient conditions for their existence. Additionally, we give worked examples and provide a large collection of tabulated multipartite MME states in a variety of systems. MME states are a special kind of maximally entangled mixed state (MEMS) for which every pure decomposition state in all decompositions is maximally entangled. Thus, MME states have entanglement 1 by all valid unit-normalized entanglement measures, whereas general MEMS can have entanglement less than 1. Multipartite MME states likely have important applications such as remote state preparation and also set critical performance goals for entanglement measures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Li, Z.-G., Zhao, M.-J., Fei, S.-M., Fan, H., Liu, W.M.: Mixed maximally entangled states. Quant. Inf. Comput. 12, 63 (2012)

    MathSciNet  MATH  Google Scholar 

  2. Schrödinger, E.: Die gegenwärtige Situation in der Quantenmechanik (German) [The present status of quantum mechanics]. Naturwiss. 23, 807 (1935)

    Article  ADS  Google Scholar 

  3. Einstein, A., Podolsky, B., Rosen, N.: Can quantum-mechanical description of physical reality be considered complete? Phys. Rev. 47, 777 (1935)

    Article  ADS  Google Scholar 

  4. Hedemann, S.R.: Candidates for Universal Measures of Multipartite Entanglement, Quant. Inf. Comput., 18 (2018) 443. http://www.rintonpress.com/journals/qiconline.html#v18n56, arxiv:1701.03782

  5. Hedemann, S.R.: Correlance and discordance: computable measures of nonlocal correlation. Quant. Inf. Process. 19, 189 (2020). https://doi.org/10.1007/s11128-020-02676-8. arxiv:2001.03453

    Article  ADS  MathSciNet  Google Scholar 

  6. Hedemann, S.R.: Ent: a multipartite entanglement measure, and parameterization of entangled states. Quant. Inf. Comput., 18, 389 (2018). http://www.rintonpress.com/journals/qiconline.html#v18n56, arxiv:1611.03882

  7. Ishizaka, S., Hiroshima, T.: Maximally entangled mixed states in two qubits. Phys. Rev. A 62, 022310 (2000)

    Article  ADS  Google Scholar 

  8. Ziman, M., Bužek, V.: Concurrence versus purity: influence of local channels on Bell states of two qubits. Phys. Rev. A 72, 052325 (2005)

    Article  ADS  Google Scholar 

  9. Horst, B., Bartkiewicz, K., Miranowicz, A.: Two-qubit mixed states more entangled than pure states: comparison of the relative entropy of entanglement for a given nonlocality. Phys. Rev. A 87, 042108 (2013)

    Article  ADS  Google Scholar 

  10. Verstraete, F., Audenaert, K., Moor, B.D.: Maximally entangled mixed states of two qubits. Phys. Rev. A 64, 012316 (2001)

    Article  ADS  Google Scholar 

  11. Wei, T.-C., Nemoto, K., Goldbart, P.M., Kwiat, P.G., Munro, W.J., Verstraete, F.: Maximal entanglement versus entropy for mixed quantum states. Phys. Rev. A 67, 022110 (2003)

    Article  ADS  Google Scholar 

  12. Mendonça, P.E.M.F., Marchiolli, M.A., Hedemann, S.R.: Maximally entangled mixed states for qubit-qutrit systems, Phys. Rev. A, 95, 022324 (2016). http://link.aps.org/doi/10.1103/PhysRevA.95.022324, arxiv:1612.01214

  13. Yu, T., Eberly, J.H.: Evolution from entanglement to decoherence of bipartite mixed X states. Quant. Inf. Comput. 7, 459 (2007)

    MathSciNet  MATH  Google Scholar 

  14. Wang, J., Batelaan, H., Podany, J., Starace, A.F.: Entanglement evolution in the presence of decoherence. J. Phys. B 39, 4343 (2006)

    Article  ADS  Google Scholar 

  15. Yu, T., Eberly, J.H.: Finite-time disentanglement via spontaneous emission. Phys. Rev. Lett. 93, 140404 (2004)

    Article  ADS  Google Scholar 

  16. Al-Qasimi, A., James, D.F.V.: Sudden death of entanglement at finite temperature. Phys. Rev. A 77, 012117 (2008)

    Article  ADS  Google Scholar 

  17. Weinstein, Y.S.: Entanglement dynamics in three qubit X-states. Phys. Rev. A 82, 032326 (2010)

    Article  ADS  Google Scholar 

  18. Peters, N.A., Altepeter, J.B., Branning, D., Jeffrey, E.R., Wei, T.-C., Kwiat, P.G.: Maximally entangled mixed states: creation and concentration. Phys. Rev. Lett. 92, 133601 (2004)

  19. Hedemann, S.R.: Evidence that All States Are Unitarily Equivalent to X States of the Same Entanglement, arXiv preprint (2013), arxiv:1310.7038

  20. Mendonça, P.E.M.F., Marchiolli, M.A., Galetti, D.: Entanglement universality of two-qubit X-states. Ann. Phys. 351, 79 (2014)

    Article  ADS  MathSciNet  Google Scholar 

  21. Hedemann, S.R.: X states of the same spectrum and entanglement as all two-qubit states. Quant. Inf. Process. 17, 293 (2018). https://doi.org/10.1007/s11128-018-2061-0. arxiv:1802.03038

    Article  ADS  MathSciNet  MATH  Google Scholar 

  22. Hedemann, S.R.: Hyperspherical Bloch Vectors with Applications to Entanglement and Quantum State Tomography, Ph.D. thesis, Stevens Institute of Technology. UMI Diss. Pub. 3636036 (2014)

  23. Schläfli, L.: Theorie der Vielfachen Kontinuität (German), Edited by J. H. Graf 1901 (1852 orig.)

  24. Teil, I., Schmidt, E.: Zur Theorie der Linearen und Nichtlinearen Integralgleichungen. Math. Annalen 63, 433 (1907)

    Article  MathSciNet  Google Scholar 

  25. Bennett, C.H., Brassard, G., Crépeau, C., Jozsa, R., Peres, A., Wootters, W.K.: Teleporting an unknown quantum state via dual classical and Einstein–Podolsky–Rosen channels. Phys. Rev. Lett. 70, 1895 (1993)

    Article  ADS  MathSciNet  Google Scholar 

  26. Bouwmeester, D., Pan, J.W., Mattle, K., Eibl, M., Weinfurter, H., Zeilinger, A.: Experimental quantum teleportation. Nature 390, 575 (1997)

    Article  ADS  Google Scholar 

  27. Bouwmeester, D., Pan, J.W., Mattle, K., Eibl, M., Weinfurter, H., Zeilinger, A.: Experimental quantum teleportation. Phil. Trans. R. Soc. Lond. A 356, 1733 (1998)

    Article  ADS  Google Scholar 

  28. Hedemann, S.R.: Noise-Resistant Quantum Teleportation, Ansibles, and the No-Projector Theorem, arXiv preprint (2016), arxiv:1605.09233

  29. Lo, H.-K.: Classical-Communication Cost in Distributed Quantum-Information Processing: A Generalization of Quantum-Communication Complexity. Phys. Rev. A 62, 012313 (2000)

    Article  ADS  Google Scholar 

  30. Pati, A.K.: Minimum classical bit for remote preparation and measurement of a qubit. Phys. Rev. A 63, 014302 (2000)

    Article  ADS  Google Scholar 

  31. Bennett, C.H., DiVincenzo, D.P., Shor, P.W., Smolin, J.A., Terhal, B.M., Wootters, W.K.: Remote state preparation. Phys. Rev. Lett. 87, 077902 (2001)

    Article  ADS  Google Scholar 

  32. Agrawal, P., Parashar, P., Pati, A.K.: Exact remote state preparation for multiparties using dark states. Intl. J. Quant. Inf. 01, 301 (2003)

    Article  Google Scholar 

  33. Nguyen, B.A., Cao, T.B., Nung, V.D., Kim, J.: Remote state preparation with unit success probability. Adv. Nat. Sci.: Nanosci. Nanotech. 2, 035009 (2011)

    Google Scholar 

  34. Zha, X.-W., Song, H.-Y.: Remote preparation of a two-particle state using a four-qubit cluster state. Opt. Commun. 284, 1472 (2011)

    Article  ADS  Google Scholar 

  35. Wang, D., Zha, X.-W., Lan, Q.: Joint remote state preparation of arbitrary two-qubit state with six-qubit state. Opt. Commun. 284, 5853 (2011)

    Article  ADS  Google Scholar 

  36. Prakash, R., Yadav, A.K.: Remote state preparation of arbitrary two-qubit state with unit success probability, AQIS’13 (2013), https://www.imsc.res.in/~aqis13/submissions/aqis2013_submission_66.pdf

  37. Wang, H.-B., Zhou, X.-Y., An, X.-X., Cui, M.-M., Fu, D.-S.: Deterministic joint remote preparation of a four-qubit cluster-type state via GHZ states. J. Theor. Phys. 55, 3588 (2016)

    Article  MathSciNet  Google Scholar 

  38. Jiao, X.-F., Zhou, P., Lv, S.-X., Wang, Z.-Y.: Remote preparation for single-photon two-qubit hybrid state with hyperentanglement via linear-optical elements. Sci. Rep. 9, 4663 (2019)

    Article  ADS  Google Scholar 

  39. Wang, M., Yan, F., Gao, T.: Remote preparation for single-photon state in two degrees of freedom with hyper-entangled states. Front. Phys. 16, 41501 (2021)

    Article  ADS  Google Scholar 

  40. Bennett, C.H., Brassard, G.: Quantum Cryptography: Public Key Distribution and Coin Tossing, p. 175. Systems and Signal Processing, Proc. IEEE Intern. Conf. on Computers (1984)

    MATH  Google Scholar 

  41. Bennett, C.H.: Quantum cryptography using any two nonorthogonal states. Phys. Rev. Lett. 68, 3121 (1992)

    Article  ADS  MathSciNet  Google Scholar 

  42. Ekert, A.K.: Quantum cryptography based on Bell’s theorem. Phys. Rev. Lett. 67, 661 (1991)

    Article  ADS  MathSciNet  Google Scholar 

  43. Feynman, R.P.: Quantum mechanical computers. Found. Phys. 16, 507 (1986)

    Article  ADS  MathSciNet  Google Scholar 

  44. DiVincenzo, D.P.: The physical implementation of quantum computation, Fortschritte der Physik, 48 (2000) 771. https://doi.org/10.1002/1521-3978(200009)48:9/11<771::AID-PROP771>3.0.CO;2-E, arXiv:quant-ph/0002077

  45. Shor, P.W.: Algorithms for quantum computation: discrete logarithms and factoring. In: Proceedings of the 35th Annual Symposium on Fundamentals of Comp. Science, 124 (1994)

  46. Shor, P.W.: Polynomial-time algorithms for prime factorization and discrete logarithms on a quantum computer. SIAM J. Sci. Statist. Comput. 26, 1484 (1997)

    Article  MathSciNet  Google Scholar 

  47. Grover, L.K.: A fast quantum mechanical algorithm for database search. In: Proceedings of the 28th Annual ACM Symposium on the Theory of Computing, 212 (1996)

  48. Deutsch, D.: Quantum theory, the Church-Turing principle and the universal quantum computer. Proc. R. Soc. Lond. A 400, 97 (1985)

    Article  ADS  MathSciNet  Google Scholar 

  49. Deutsch, D., Jozsa, R.: Rapid solution of problems by quantum computation. Proc. R. Soc. Lond. A 439, 553 (1992)

    Article  ADS  MathSciNet  Google Scholar 

  50. Cleve, R., Ekert, A., Macchiavello, C., Mosca, M.: Quantum algorithms revisited. Proc. R. Soc. Lond. A 454, 339 (1998)

    Article  ADS  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hedemann, S.R. Multipartite mixed maximally entangled states: mixed states with entanglement 1. Quantum Inf Process 21, 133 (2022). https://doi.org/10.1007/s11128-022-03458-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11128-022-03458-0

Keywords

Navigation