Skip to main content
Log in

Quantum information transfer using weak measurements and any non-product resource state

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

Information about an unknown quantum state can be encoded in weak values of projectors belonging to a complete eigenbasis. A protocol that enables one party—Bob—to remotely determine the weak values corresponding to weak measurements performed by another spatially separated party—Alice is presented. The particular set of weak values contains complete information of the quantum state encoded on Alice’s register, which enacts the role of preselected system state in the aforementioned weak measurement. Consequently, Bob can determine the quantum state from these weak values, which can also be termed as remote state determination or remote state tomography. A combination of non-product bipartite resource state shared between the two parties and classical communication between them is necessary to bring this statistical scheme to fruition. Significantly, the information transfer of a pure quantum state of any known dimensions can be effected even with resource states of low dimensionality and purity with a single measurement setting at Bob’s end.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Data availability

This manuscript has no available data.

Notes

  1. This can in a restricted sense be also defined as the weak value of \( \hat{A} \otimes \mathbb {I}\) if one defines the projection operator to be \( \pi _A^l \otimes \mathbb {I} \).

References

  1. Bennett, C.H., Brassard, G.: Quantum cryptography: public key distribution and coin tossing. Theor. Comput. Sci. 560, 7 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  2. Einstein, A., Podolsky, B., Rosen, N.: Can quantum-mechanical description of physical reality be considered complete? Phys. Rev. 47, 777 (1935)

    Article  ADS  MATH  Google Scholar 

  3. Schrödinger, E.: Mathematical Proceedings of the Cambridge Philosophical Society, vol. 31, pp. 555–563. Cambridge University Press, Cambridge (1935)

  4. Ekert, A.K.: Quantum cryptography based on Bell’s theorem. Phys. Rev. Lett. 67, 661 (1991)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  5. Bennett, C.H., Brassard, G., Crèpeau, C., Jozsa, R., Peres, A., Wootters, W.K.: Teleporting an unknown quantum state via dual classical and Einstein–Podolsky–Rosen channels. Phys. Rev. Lett. 70, 1895 (1993)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  6. Pati, A.K.: Minimum classical bit for remote preparation and measurement of a qubit. Phys. Rev. A 63, 014302 (2000)

    Article  ADS  Google Scholar 

  7. Bennett, C.H., DiVincenzo, D.P., Shor, P.W., Smolin, J.A., Terhal, B.M., Wootters, W.K.: Remote state preparation. Phys. Rev. Lett. 87, 077902 (2001)

    Article  ADS  Google Scholar 

  8. Scarani, V., Bechmann-Pasquinucci, H., Cerf, N.J., Dušek, M., Lütkenhaus, N., Peev, M.: The security of practical quantum key distribution. Rev. Mod. Phys. 81, 1302 (2009)

    Article  ADS  Google Scholar 

  9. Vaidman, L.: Teleportation of quantum states. Phys. Rev. A 49, 1473 (1994)

    Article  ADS  Google Scholar 

  10. Braunstein, S.L., Kimble, H.J.: Teleportation of continuous quantum variables. Phys. Rev. Lett. 80, 869 (1998)

    Article  ADS  Google Scholar 

  11. Koniorczyk, M., Bužek, V., Janszky, J.: Wigner-function description of quantum teleportation in arbitrary dimensions and a continuous limit. Phys. Rev. A 64, 034301 (2001)

    Article  ADS  Google Scholar 

  12. Pirandola, S., Eisert, J., Weedbrook, C., Furusawa, A., Braunstein, S.: Advances in quantum teleportation. Nat. Photonics 9, 641 (2015)

    Article  ADS  Google Scholar 

  13. Yonezawa, H., Aoki, T., Furusawa, A.: Demonstration of a quantum teleportation network for continuous variables. Nature 431, 430 (2004)

    Article  ADS  Google Scholar 

  14. Andersen, U.L., Ralph, T.C.: High-fidelity teleportation of continuous-variable quantum states using delocalized single photons. Phys. Rev. Lett. 111, 050504 (2013)

    Article  ADS  Google Scholar 

  15. Ulanov, A.E., Sychev, D., Pushkina, A.A., Fedorov, I.A., Lvovsky, A.I.: Quantum teleportation between discrete and continuous encodings of an optical qubit. Phys. Rev. Lett. 118, 160501 (2017)

    Article  ADS  MathSciNet  Google Scholar 

  16. Joo, J., Park, Y.-J., Oh, S., Kim, J.: Quantum teleportation via a W state. New J. Phys. 5, 136 (2003)

    Article  ADS  Google Scholar 

  17. Luo, M.-X., Li, L., Ma, S.-Y., Chen, X.-B., Yang, Y.-X.: Faithful transfer arbitrary pure states with mixed resources. Int. J. Theor. Phys. 52, 3032 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  18. Zhao, M.-J., Li, Z.-G., Fei, S.-M., Wang, Z.-X., Li-Jost, X.: Faithful teleportation with arbitrary pure or mixed resource states. J. Phys. A Math. Theor. 44, 215302 (2011)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  19. Albeverio, S., Fei, S.-M., Yang, W.-L.: Optimal teleportation based on bell measurements. Phys. Rev. A 66, 012301 (2002)

    Article  ADS  Google Scholar 

  20. Cavalcanti, D., Skrzypczyk, P., Šupić, I.: All entangled states can demonstrate nonclassical teleportation. Phys. Rev. Lett. 119, 110501 (2017)

    Article  ADS  Google Scholar 

  21. Agrawal, P., Pati, A.K.: Probabilistic quantum teleportation. Phys. Lett. A 305, 12 (2002)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  22. Biamonte, J., Wittek, P., Pancotti, N., Rebentrost, P., Wiebe, N., Lloyd, S.: Quantum machine learning. Nature 549, 195 (2017)

    Article  ADS  Google Scholar 

  23. Diamanti, E., Lo, H.-K., Qi, B., Yuanl, Z.: Practical challenges in quantum key distribution. NPJ Quantum Inf. 2, 1–12 (2016)

    Article  Google Scholar 

  24. Ma, X., Fred Fung, C.-H., Lo, H.-K.: Quantum key distribution with entangled photon sources. Phys. Rev. A 76, 012307 (2007)

    Article  ADS  Google Scholar 

  25. Lo, H.-K., Curty, M., Tamaki, K.: Secure quantum key distribution. Nat. Photonics 8, 595 (2014)

    Article  ADS  Google Scholar 

  26. Aharonov, Y., Albert, D.Z., Vaidman, L.: How the result of a measurement of a component of the spin of a spin-1/2 particle can turn out to be 100. Phys. Rev. Lett. 60, 1351 (1988)

    Article  ADS  Google Scholar 

  27. Duck, I.M., Stevenson, P.M., Sudarshan, E.C.G.: The sense in which a weak measurement of a spin-1/2 particle’s spin component yields a value 100. Phys. Rev. D 40, 2112 (1989)

    Article  ADS  Google Scholar 

  28. Kanjilal, S., Muralidhara, G., Home, D.: Manifestation of pointer-state correlations in complex weak values of quantum observables. Phys. Rev. A 94, 052110 (2016)

    Article  ADS  Google Scholar 

  29. Wu, S., Mølmer, K.: Weak measurements with a qubit meter. Phys. Lett. A 374, 34 (2009)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  30. Brun, T.A., Diósi, L., Strunz, W.T.: Test of weak measurement on a two-or three-qubit computer. Phys. Rev. A 77, 032101 (2008)

    Article  ADS  Google Scholar 

  31. Lundeen, J., Resch, K.: Practical measurement of joint weak values and their connection to the annihilation operator. Phys. Lett. A 334, 337 (2005)

    Article  ADS  MATH  Google Scholar 

  32. Menzies, D., Korolkova, N.: Weak measurements with entangled probes. Phys. Rev. A 77, 062105 (2008)

    Article  ADS  Google Scholar 

  33. Ho, J., Boston, A., Palsson, M., Pryde, G.: Experimental noiseless linear amplification using weak measurements. New J. Phys. 18, 093026 (2016)

    Article  ADS  Google Scholar 

  34. Johansen, L.M.: Weak measurements with arbitrary probe states. Phys. Rev. Lett. 93, 120402 (2004)

    Article  ADS  Google Scholar 

  35. Kofman, A.G., Ashhab, S., Nori, F.: Nonperturbative theory of weak pre-and post-selected measurements. Phys. Rep. 520, 43 (2012)

    Article  ADS  MathSciNet  Google Scholar 

  36. Lundeen, J.S., Sutherland, B., Patel, A., Stewart, C., Bamber, C.: Direct measurement of the quantum wavefunction. Nature 474, 188 (2011)

    Article  Google Scholar 

  37. Lundeen, J.S., Bamber, C.: Procedure for direct measurement of general quantum states using weak measurement. Phys. Rev. Lett. 108, 070402 (2012)

    Article  ADS  Google Scholar 

  38. Thekkadath, G.S., Giner, L., Chalich, Y., Horton, M.J., Banker, J., Lundeen, J.S.: Direct measurement of the density matrix of a quantum system. Phys. Rev. Lett. 117, 120401 (2016)

    Article  ADS  Google Scholar 

  39. Wu, S.: State tomography via weak measurements. Sci. Rep. 3, 1193 (2013)

    Article  ADS  Google Scholar 

  40. Vogel, K., Risken, H.: Determination of quasiprobability distributions in terms of probability distributions for the rotated quadrature phase. Phys. Rev. A 40, 2847 (1989)

    Article  ADS  Google Scholar 

  41. Cramer, M., Plenio, M.B., Flammia, S.T., Somma, R., Gross, D., Bartlett, S.D., Landon-Cardinal, O., Poulin, D., Liu, Y.-K.: Efficient quantum state tomography. Nat. Commun. 1, 149 (2010)

    Article  ADS  Google Scholar 

  42. Von Neumann, J.: Mathematical Foundations of Quantum Mechanics, vol. 2. Princeton University Press, Princeton (1955)

    MATH  Google Scholar 

  43. Ku, H.H.: Notes on the use of propagation of error formulas. J. Res. Natl. Bur. Stand. 70, 263–273 (1966)

    Google Scholar 

  44. Gupta, M.K., You, C., Dowling, J.P., Lee, H.: Saving entangled photons from sudden death is a single-mode fiber—Interplay of Decoherence and dynamical decoupling. In: APS Division of Atomic, Molecular and Optical Physics Meeting Abstracts, p. H4.009 (2016)

  45. Gupta, M.K.: Minimizing Decoherence in Optical Fiber for Long Distance Quantum Communication. Ph.D. thesis, Louisiana State University (2016)

  46. Modi, K., Brodutch, A., Cable, H., Paterek, T., Vedral, V.: The classical-quantum boundary for correlations: discord and related measures. Rev. Mod. Phys. 84, 1655 (2012)

    Article  ADS  Google Scholar 

  47. Pande, V.R., Shaji, A.: Minimum disturbance rewards with maximum possible classical correlations. Phys. Lett. A 381, 2045 (2017)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  48. Maccone, L., Rusconi, C.C.: State estimation: a comparison between direct state measurement and tomography. Phys. Rev. A 89, 022122 (2014)

    Article  ADS  Google Scholar 

  49. Nielsen, M., Knill, E., Laflamme, R.: Complete quantum teleportation using nuclear magnetic resonance. Nature 396, 52 (1998)

    Article  ADS  Google Scholar 

  50. Xu, J.-S., Xu, X.-Y., Li, C.-F., Zhang, C.-J., Zou, X.-B., Guo, G.-C.: Experimental investigation of classical and quantum correlations under decoherence. Nat. Commun. 1, 7 (2010)

    Article  ADS  Google Scholar 

  51. Bae, J., Jin, J., Kim, J., Yoon, C., Kwon, Y.: Three-party quantum teleportation with asymmetric states. Chaos Solitons Fractals 24, 1047 (2005)

    Article  ADS  MATH  Google Scholar 

  52. Pirandola, S., Mancini, S., Vitali, D.: Conditioning two-party quantum teleportation within a three-party quantum channel. Phys. Rev. A 71, 042326 (2005)

    Article  ADS  Google Scholar 

  53. Hu, M.-J., Zhou, Z.-Y., Hu, X.-M., Li, C.-F., Guo, G.-C., Zhang, Y.-S.: arXiv preprint arXiv:1609.01863 (2016)

  54. Lo, H.-K.: Classical-communication cost in distributed quantum-information processing: a generalization of quantum-communication complexity. Phys. Rev. A 62, 012313 (2000)

    Article  ADS  Google Scholar 

  55. Gisin, N., Thew, R.: Quantum communication. Nat. Photonics 1, 165 (2007)

    Article  ADS  Google Scholar 

  56. Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information. Cambridge University Press, Cambridge (2010)

    MATH  Google Scholar 

  57. Roszak, K., et al.: The relation between the quantum discord and quantum teleportation: the physical interpretation of the transition point between different quantum discord decay regimes. EPL (Europhys. Lett.) 112, 10002 (2015)

    Article  ADS  Google Scholar 

  58. Wiseman, H.M., Jones, S.J., Doherty, A.C.: Steering, entanglement, nonlocality, and the Einstein–Podolsky–Rosen paradox. Phys. Rev. Lett. 98, 140402 (2007)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  59. Buscemi, F.: All entangled quantum states are nonlocal. Phys. Rev. Lett. 108, 200401 (2012)

    Article  ADS  Google Scholar 

  60. Guo, Y., Wu, S.: Quantum correlation exists in any non-product state. Sci. Rep. 4, 1–5 (2014)

    Google Scholar 

  61. Masanes, L., Liang, Y.-C., Doherty, A.C.: All bipartite entangled states display some hidden nonlocality. Phys. Rev. Lett. 100, 090403 (2008)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  62. Peres, A.: Separability criterion for density matrices. Phys. Rev. Lett. 77, 1413 (1996)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  63. Maccone, L., Bruss, D., Macchiavello, C.: Complementarity and correlations. Phys. Rev. Lett. 114, 130401 (2015)

    Article  ADS  Google Scholar 

  64. Acín, A., Augusiak, R., Cavalcanti, D., Hadley, C., Korbicz, J.K., Lewenstein, M., Masanes, L., Piani, M.: Unified framework for correlations in terms of local quantum observables. Phys. Rev. Lett. 104, 140404 (2010)

    Article  ADS  Google Scholar 

  65. Bartlett, S.D., Doherty, A.C., Spekkens, R.W., Wiseman, H.M.: Entanglement under restricted operations: analogy to mixed-state entanglement. Phys. Rev. A 73, 022311 (2006)

    Article  ADS  Google Scholar 

  66. Ferraro, A., Aolita, L., Cavalcanti, D., Cucchietti, F.M., Acín, A.: Almost all quantum states have nonclassical correlations. Phys. Rev. A 81, 052318 (2010)

    Article  ADS  Google Scholar 

  67. Bell, J.S.: On the Einstein Podolsky Rosen paradox. Phys. Phys. Fizika 1, 195 (1964)

    Article  MathSciNet  Google Scholar 

  68. Werner, R.F.: Quantum states with Einstein–Podolsky–Rosen correlations admitting a hidden-variable model. Phys. Rev. A 40, 4277 (1989)

    Article  ADS  MATH  Google Scholar 

  69. Silva, R., Gisin, N., Guryanova, Y., Popescu, S.: Multiple observers can share the nonlocality of half of an entangled pair by using optimal weak measurements. Phys. Rev. Lett. 114, 250401 (2015)

    Article  ADS  Google Scholar 

  70. Gisin, N.: Bell’s inequality holds for all non-product states. Phys. Lett. A 154, 201 (1991)

    Article  ADS  MathSciNet  Google Scholar 

  71. Lanyon, B.P., Barbieri, M., Almeida, M.P., White, A.G.: Experimental quantum computing without entanglement. Phys. Rev. Lett. 101, 200501 (2008)

    Article  ADS  Google Scholar 

  72. Wang, L., Huang, J.-H., Dowling, J.P., Zhu, S.-Y.: Quantum information transmission. Quantum Inf. Process. 12, 899 (2013)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  73. Grosshans, F., Grangier, P.: Quantum cloning and teleportation criteria for continuous quantum variables. Phys. Rev. A 64, 010301 (2001)

    Article  ADS  MathSciNet  Google Scholar 

  74. Coto, R., Montenegro, V., Eremeev, V., Mundarain, D., Orszag, M.: The power of a control qubit in weak measurements. Sci. Rep. 7, 6351 (2017)

    Article  ADS  Google Scholar 

  75. Dressel, J., Malik, M., Miatto, F.M., Jordan, A.N., Boyd, R.W.: Colloquium: Understanding quantum weak values: basics and applications. Rev. Mod. Phys. 86, 307 (2014)

    Article  ADS  Google Scholar 

  76. Mirhosseini, M., Magaña-Loaiza, O.S., Hashemi Rafsanjani, S.M., Boyd, R.W.: Compressive direct measurement of the quantum wave function. Phys. Rev. Lett. 113, 090402 (2014)

    Article  ADS  Google Scholar 

  77. Zhou, Y., Zhao, J., Hay, D., McGonagle, K., Boyd, R.W., Shi, Z.: Direct tomography of high-dimensional density matrices for general quantum states of photons. Phys. Rev. Lett. 127(4), 040402 (2021). https://doi.org/10.1103/PhysRevLett.127.040402

  78. Resch, K.J., Steinberg, A.M.: Extracting joint weak values with local, single-particle measurements. Phys. Rev. Lett. 92, 130402 (2004)

    Article  ADS  Google Scholar 

  79. Puentes, G., Hermosa, N., Torres, J.P.: Weak measurements with orbital-angular-momentum pointer states. Phys. Rev. Lett. 109, 040401 (2012)

    Article  ADS  Google Scholar 

  80. Pati, A.K., Singh, U.: arXiv preprint. arXiv:1310.6002 (2013)

  81. Bertlmann, R.A., Krammer, P.: Bloch vectors for qudits. J. Phys. A Math. Theor. 41, 235303 (2008)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  82. Stephany, J.: Higher-dimensional extensions of Pauli spin matrices. J. Phys. A Math. Gen. 12, 1667 (1979)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

I am grateful to Charles H. Bennett, Raul Coto, Justin Dressel, Yuji Hasegawa, Dipankar Home, T. S. Mahesh, Jonathan Oppenheim, Arun Kumar Pati, Ujjwal Sen, Anil Shaji, Lev Vaidman, and Giuseppe Vallone for useful feedback. I thank Manish Gupta for discussions on noise in optical fibers, and Soumik Adhikary, Jacob Biamonte, Daniil Rabinovich, Richik Sengupta, and Akshay Vishwanathan for pointing out that the proof in an earlier version was incomplete. Posters on this work were presented at the “3rd International Conference on Quantum Foundations” at NIT Patna, at the “International Symposium on New Frontiers in Quantum Correlations” at SNBNCBS, Kolkata, and at “Quantum Optics X” at Toruń, Poland. V. R. P. acknowledges support from the DST, Govt. of India through the INSPIRE scheme and the hospitality of Bose Institute. Research at HRI is supported by the DAE, Govt. of India.

Author information

Authors and Affiliations

Authors

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix A: Protocol algebraic details—transferring imaginary part of the weak value

  1. 1.

    Bob’s unnormalized state corresponding to the measurement of the imaginary part of the weak value:

    $$\begin{aligned} \rho _B^{un}= & {} \hbox {Tr}_{I,A} ( \hat{\pi }_{I}^v \rho _{tw}) \approx \hbox {Tr}_{I,A} (\hat{\pi }_{I}^v (\mathbb {I} + ig\hat{\Pi }_I \otimes \hat{A} \otimes \mathbb {I}) \rho _{I}\nonumber \\&\otimes \rho _{AB} (\mathbb {I} - ig\hat{\Pi }_I \otimes \hat{A}\otimes \mathbb {I})) \nonumber \\= & {} \hbox {Tr}_{I,A} (\hat{\pi }_{I}^v (\rho _{I} \otimes \rho _{AB} + ig\hat{\Pi }_I \rho _{I} \nonumber \\&\otimes (\hat{A} \otimes \mathbb {I}) \rho _{AB} ) (\mathbb {I} - ig\hat{\Pi }_I \otimes \hat{A} \otimes \mathbb {I})) \nonumber \\= & {} \hbox {Tr}_{I,A} (\hat{\pi }_{I}^v (\rho _{I} \otimes \rho _{AB} - ig \rho _{I} \hat{\Pi }_I \otimes \rho _{AB} ( \hat{A} \otimes \mathbb {I})\nonumber \\&+ ig\hat{\Pi }_I \rho _{I} \otimes (\hat{A} \otimes \mathbb {I}) \rho _{AB} ) ) \nonumber \\= & {} \hbox {Tr}_{I,A} ( (\hat{\pi }_{I}^v \rho _{I} \otimes \rho _{AB}) - ig \hat{\pi }_{I}^v \rho _{I} \hat{\Pi }_I \otimes \rho _{AB}\nonumber \\&( \hat{A} \otimes \mathbb {I}) + ig ( \hat{\pi }_{I}^v \hat{\Pi }_I \rho _{I} ) \otimes (\hat{A} \otimes \mathbb {I}) \rho _{AB} ) \nonumber \\= & {} \hbox {Tr}_{I} (\hat{\pi }_{I}^v \rho _{I}) ( ( \hbox {Tr}_{A} ( \rho _{AB}) - ig ( \hat{\Pi }_I )_w^* \hbox {Tr}_{A} ( \rho _{AB} ( \hat{A} \otimes \mathbb {I})) \nonumber \\&+ ig ( \hat{\Pi }_I )_w \hbox {Tr}_{A} ( (\hat{A} \otimes \mathbb {I}) \rho _{AB} ) )). \end{aligned}$$
    (A1)
  2. 2.

    Normalizing the above state:

    Cyclic property of the trace allows us to write \( \hbox {Tr}_{A} ( \rho _{AB} ( \hat{A} \otimes \mathbb {I})) = \hbox {Tr}_{A} ( (\hat{A} \otimes \mathbb {I}) \rho _{AB} ) \). Bob’s initial state is \( \hbox {Tr}_{A} ( \rho _{AB}) \equiv \rho _B^\mathrm{{in}} \). Thus, we can write

    $$\begin{aligned} \rho _B^{un} \approx \hbox {Tr}_{I} (\hat{\pi }_{I}^v \rho _{I}) (\rho _B^\mathrm{{in}} - 2 g \hbox {Im} ( \hat{\Pi }_I )_w \hbox {Tr}_{A} ((\hat{A} \otimes \mathbb {I}) \rho _{AB}) ). \end{aligned}$$

    Further, using \( \hbox {Tr}(\rho _B^\mathrm{{in}}) = 1 \):

    $$\begin{aligned} \rho _{B}^N = \frac{\rho _{B}^{un}}{\hbox {Tr}(\rho _B^{un})}\approx \frac{\bigg (\rho _B^\mathrm{{in}} - 2 g \hbox {Im} ( \hat{\Pi }_I )_w \hbox {Tr}_{A} ((\hat{A} \otimes \mathbb {I}) \rho _{AB}) \bigg )}{\bigg ( 1 - 2 g \hbox {Im} ( \hat{\Pi }_I )_w \hbox {Tr}( (\hat{A} \otimes \mathbb {I}) \rho _{AB} ) \bigg )}. \end{aligned}$$
    (A2)

    In line with the weak approximation, one can bring the denominator to the numerator and Taylor expand up to the first order in g:

    $$\begin{aligned} \rho _B^N\approx & {} \bigg ( \rho _B^\mathrm{{in}} - 2 g \hbox {Im} ( \hat{\Pi }_I )_w \hbox {Tr}_{A} ((\hat{A} \otimes \mathbb {I}) \rho _{AB}) \bigg ) \bigg (1 + 2 g \hbox {Im} ( \hat{\Pi }_I )_w \hbox {Tr}((\hat{A} \otimes \mathbb {I}) \rho _{AB}) \bigg ) \nonumber \\= & {} \rho _B^\mathrm{{in}} + 2g \hbox {Im} ( \hat{\Pi }_I )_w \hbox {Tr}((\hat{A} \otimes \mathbb {I})\rho _{AB}) \rho _{B}^\mathrm{{in}} - 2g \hbox {Im} ( \hat{\Pi }_I )_w \hbox {Tr}_A ((\hat{A} \otimes \mathbb {I})\rho _{AB}) \nonumber \\= & {} \rho _B^\mathrm{{in}} + 2 g \hbox {Im} ( \hat{\Pi }_I )_w \bigg (\hbox {Tr}((\hat{A} \otimes \mathbb {I})\rho _{AB})\rho _{B}^\mathrm{{in}} - \hbox {Tr}_{A} ((\hat{A} \otimes \mathbb {I})\rho _{AB})\bigg ). \end{aligned}$$
    (A3)
  3. 3.

    Bob’s expectation value:

    $$\begin{aligned} \langle \hat{B} \rangle _f^\mathrm{{Im}}= & {} \hbox {Tr}(\hat{B} \rho _B^N) \nonumber \\\approx & {} \hbox {Tr}(\hat{B} \rho _B^\mathrm{{in}}) + 2 g \hbox {Im} ( \hat{\Pi }_I )_w\nonumber \\&\bigg ( \hbox {Tr}((\hat{A}\otimes \mathbb {I})\rho _{AB}) \hbox {Tr}(\hat{B}\rho _B^\mathrm{{in}}) - \hbox {Tr}(\hat{B} \hbox {Tr}_{A} ((\hat{A} \otimes \mathbb {I})\rho _{AB}))\bigg ). \end{aligned}$$
    (A4)

Appendix B: Protocol algebraic details—transferring real part of the weak value

  1. 1.

    Bob’s unnormalized state:

    $$\begin{aligned} \rho _B^{un}= & {} \hbox {Tr}_{I,A} ((\hat{\pi }_{I}^v \otimes \hat{\pi }_{A}^l \otimes \mathbb {I}) \rho _{tw}) \\\approx & {} \hbox {Tr}_{I,A} ((\hat{\pi }_{I}^v \otimes \hat{\pi }_{A}^l \mathbb {I}) (\mathbb {I} + ig\hat{\Pi }_I\nonumber \\&\otimes \hat{A} \mathbb {I}) \rho _{I} \otimes \rho _{AB} (\mathbb {I} - ig\hat{\Pi }_I \otimes \hat{A} \otimes \mathbb {I})) \\= & {} \hbox {Tr}_{I,A} ((\hat{\pi }_{I}^v \otimes \hat{\pi }_{A}^l \otimes \mathbb {I}) (\rho _{I} \otimes \rho _{AB} + ig\hat{\Pi }_I \rho _{I}\nonumber \\&\otimes (\hat{A} \otimes \mathbb {I}) \rho _{AB} ) (\mathbb {I} - ig\hat{\Pi }_I \otimes \hat{A} \otimes \mathbb {I})) \\= & {} \hbox {Tr}_{I,A} ((\hat{\pi }_{I}^v \otimes \hat{\pi }_{A}^l \otimes \mathbb {I}) (\rho _{I} \otimes \rho _{AB} - ig \rho _{I} \hat{\Pi }_I\otimes \rho _{AB} ( \hat{A} \otimes \mathbb {I}) \nonumber \\&+ ig\hat{\Pi }_I \rho _{I} \otimes (\hat{A} \otimes \mathbb {I}) \rho _{AB} ) )\\= & {} \hbox {Tr}_{I,A} ( (\hat{\pi }_{I}^v \rho _{I} \otimes (\hat{\pi }_{A}^l\otimes \mathbb {I}) \rho _{AB} \nonumber \\&- ig \hat{\pi }_{I}^v \rho _{I} \hat{\Pi }_I \otimes (\hat{\pi }_{A}^l \otimes \mathbb {I}) \rho _{AB} ( \hat{A}\otimes \mathbb {I}) \\&\quad + ig \hat{\pi }_{I}^v \hat{\Pi }_I \rho _{I} \otimes (\hat{\pi }_{A}^l \otimes \mathbb {I}) (\hat{A} \otimes \mathbb {I}) \rho _{AB} ) ) \\= & {} \hbox {Tr}_{I} (\hat{\pi }_{I}^v \rho _{I}) ( \hbox {Tr}_{A} ((\hat{\pi }_{A}^l \otimes \mathbb {I}) \rho _{AB}) \nonumber \\&- ig ( \hat{\Pi }_I )_w^* \hbox {Tr}_{A} ( (\hat{\pi }_{A}^l \otimes \mathbb {I}) \rho _{AB} ( \hat{A} \otimes \mathbb {I})) \\&\quad + ig ( \hat{\Pi }_I )_w \hbox {Tr}_{A} ( (\hat{\pi }_{A}^l \otimes \mathbb {I}) (\hat{A} \otimes \mathbb {I}) \rho _{AB} ) ). \end{aligned}$$

    Taking the partial trace operation over I and A inside the parenthesis, one finds:

    $$\begin{aligned} \rho _B^{un}\approx & {} ( ( \hbox {Tr}_{I} (\hat{\pi }_{I}^v \rho _{I}) \hbox {Tr}_{A} ((\hat{\pi }_{A}^l \otimes \mathbb {I}) \rho _{AB}) \nonumber \\&- ig \hbox {Tr}_{I} ( \hat{\pi }_{I}^v \rho _{I} \hat{\Pi }_I) \hbox {Tr}_{A}( (\hat{\pi }_{A}^l \otimes \mathbb {I}) \rho _{AB} ( \hat{A} \otimes \mathbb {I}))\nonumber \\&\quad + ig \hbox {Tr}_{I} ( \hat{\pi }_{I}^v \hat{\Pi }_I \rho _{I}) \hbox {Tr}_{A} ( (\hat{\pi }_{A}^l \otimes \mathbb {I}) (\hat{A} \otimes \mathbb {I}) \rho _{AB} ) )) \nonumber \\= & {} \hbox {Tr}_{I} (\hat{\pi }_{I}^v \rho _{I}) ( ( \hbox {Tr}_{A} ((\hat{\pi }_{A}^l \otimes \mathbb {I}) \rho _{AB}) \nonumber \\&- ig \hbox {Tr}_{I} ( \hat{\pi }_{I}^v \rho _{I} \hat{\Pi }_I) \hbox {Tr}_{A}( (\hat{\pi }_{A}^l \otimes \mathbb {I}) \rho _{AB} ( \hat{A} \otimes \mathbb {I})) \nonumber \\&\quad + ig \hbox {Tr}_{I} ( \hat{\pi }_{I}^v \hat{\Pi }_I \rho _{I}) \hbox {Tr}_{A} ( (\hat{\pi }_{A}^l \otimes \mathbb {I}) (\hat{A} \otimes \mathbb {I}) \rho _{AB} ) )) \nonumber \\= & {} \hbox {Tr}_{I} (\hat{\pi }_{I}^v \rho _{I}) ( \hbox {Tr}_{A} ((\hat{\pi }_{A}^l \otimes \mathbb {I}) \rho _{AB}) \nonumber \\&- ig ( \hat{\Pi }_I )_w^* \hbox {Tr}_{A} ( (\hat{\pi }_{A}^l \otimes \mathbb {I}) \rho _{AB} ( \hat{A} \otimes \mathbb {I})) \nonumber \\&\quad + ig ( \hat{\Pi }_I )_w \hbox {Tr}_{A} ( (\hat{\pi }_{A}^l \otimes \mathbb {I}) (\hat{A} \otimes \mathbb {I}) \rho _{AB} ) ). \end{aligned}$$
    (B1)
  2. 2.

    Trace of the unnormalized state:

    $$\begin{aligned} \hbox {Tr}(\rho _b^{un})\approx & {} \hbox {Tr}( \hbox {Tr}_{I} (\hat{\pi }_{I}^v \rho _{I}) ( ( \hbox {Tr}_{A} ((\hat{\pi }_{A}^l \otimes \mathbb {I}) \rho _{AB}) \nonumber \\&- ig ( \hat{\Pi }_I )_w^* \hbox {Tr}_{A}( (\hat{\pi }_{A}^l \otimes \mathbb {I}) \rho _{AB} ( \hat{A} \otimes \mathbb {I}))\nonumber \\&\quad + ig ( \hat{\Pi }_I )_w \hbox {Tr}( (\hat{\pi }_{A}^l \otimes \mathbb {I}) (\hat{A} \otimes \mathbb {I}) \rho _{AB} ) ))) \nonumber \\= & {} \hbox {Tr}_{I} (\hat{\pi }_{I}^v \rho _{I}) ( ( \hbox {Tr}((\hat{\pi }_{A}^l\otimes \mathbb {I}) \rho _{AB}) \nonumber \\&- ig ( \hat{\Pi }_I )_w^* \hbox {Tr}( (\hat{\pi }_{A}^l \otimes \mathbb {I}) \rho _{AB} ( \hat{A} \otimes \mathbb {I})) \nonumber \\&\quad + ig ( \hat{\Pi }_I )_w \hbox {Tr}( (\hat{\pi }_{A}^l \otimes \mathbb {I}) (\hat{A} \otimes \mathbb {I}) \rho _{AB} ) ))\nonumber \\= & {} \hbox {Tr}_{I} (\hat{\pi }_{I}^v \rho _{I}) \hbox {Tr}((\hat{\pi }_{A}^l \otimes \mathbb {I}) \rho _{AB}) ( ( 1 - ig ( \hat{\Pi }_I )_w^* ( \hat{A} )_{w'}^* \nonumber \\&+ ig ( \hat{\Pi }_I )_w ( \hat{A} )_{w'} )). \end{aligned}$$
    (B2)
  3. 3.

    Now, let us normalize Bob’s state using its norm in the denominator:

    $$\begin{aligned} \rho _B^{N}= & {} \frac{\rho _B^{un}}{\hbox {Tr}(\rho _B^{un})} \nonumber \\ \approx & {} \frac{ \hbox {Tr}_{I} (\hat{\pi }_{I}^v \rho _{I}) ( ( \hbox {Tr}_{A} ((\hat{\pi }_{A}^l \otimes \mathbb {I}) \rho _{AB}) - ig ( \hat{\Pi }_I )_w^* \hbox {Tr}_{A}( (\hat{\pi }_{A}^l \otimes \mathbb {I})\rho _{AB} ( \hat{A} \otimes \mathbb {I})) + ig ( \hat{\Pi }_I )_w \hbox {Tr}_{A} ( (\hat{\pi }_{A}^l \otimes \mathbb {I}) (\hat{A} \otimes \mathbb {I}) \rho _{AB} ) }{ \hbox {Tr}_{I} (\hat{\pi }_{I}^v \rho _{I}) \hbox {Tr}((\hat{\pi }_{A}^l \otimes \mathbb {I}) \rho _{AB}) ( 1 - ig ( \hat{\Pi }_I )_w^* ( \hat{A} )_{w'}^* + ig ( \hat{\Pi }_I )_w ( \hat{A} )_{w'} )}.\nonumber \\ \end{aligned}$$
    (B3)

    Using the weak approximation, the inverse of the denominator can be Taylor expanded up to the first order in g:

    $$\begin{aligned} \rho _B^{N}\approx & {} \frac{1}{\hbox {Tr}((\hat{\pi }_{A}^l \otimes \mathbb {I}) \rho _{AB})} ( \hbox {Tr}_{A} ((\hat{\pi }_{A}^l \otimes \mathbb {I}) \rho _{AB}) \nonumber \\&- ig ( \hat{\Pi }_I )_w^* \hbox {Tr}_{A} ( (\hat{\pi }_{A}^l \otimes \mathbb {I}) \rho _{AB} ( \hat{A} \otimes \mathbb {I})) \nonumber \\&+ ig ( \hat{\Pi }_I )_w \hbox {Tr}_{A} ( (\hat{\pi }_{A}^l \otimes \mathbb {I}) (\hat{A} \otimes \mathbb {I}) \rho _{AB} )) \nonumber \\&( 1 + ig ( \hat{\Pi }_I )_w^* ( \hat{A} )_{w'}^* - ig ( \hat{\Pi }_I )_w ( \hat{A} )_{w'} ) \nonumber \\= & {} \frac{1}{\hbox {Tr}((\hat{\pi }_{A}^l \otimes \mathbb {I}) \rho _{AB})} ( \hbox {Tr}_{A} ((\hat{\pi }_{A}^l \otimes \mathbb {I}) \rho _{AB}) \nonumber \\&+ ig ( \hat{\Pi }_I )_w^* ( \hat{A} )_{w'}^* \hbox {Tr}_{A} ((\hat{\pi }_{A}^l \otimes \mathbb {I}) \rho _{AB})\nonumber \\&- ig ( \hat{\Pi }_I )_w ( \hat{A} )_{w'}\hbox {Tr}_{A} ((\hat{\pi }_{A}^l \otimes \mathbb {I}) \rho _{AB}) \nonumber \\&- ig ( \hat{\Pi }_I )_w^* \hbox {Tr}_{A}( (\hat{\pi }_{A}^l \otimes \mathbb {I}) \rho _{AB} ( \hat{A} \otimes \mathbb {I})) \nonumber \\&+ ig ( \hat{\Pi }_I )_w \hbox {Tr}_{A} ( (\hat{\pi }_{A}^l \otimes \mathbb {I}) (\hat{A} \otimes \mathbb {I}) \rho _{AB} )). \end{aligned}$$
    (B4)
  4. 4.

    Bob’s expectation value:

    $$\begin{aligned}&\langle \hat{B} \rangle _f^\mathrm{{Re}} = \hbox {Tr}(\hat{B}\rho _B^{N}) \nonumber \\&\quad \approx \frac{1}{\hbox {Tr}((\hat{\pi }_{A}^l \otimes \mathbb {I}) \rho _{AB})}\bigg [ \hbox {Tr}((\hat{\pi }_{A}^l \otimes \mathbb {I}) (\mathbb {I} \otimes \hat{B}) \rho _{AB})\nonumber \\&\qquad + ig ( \hat{\Pi }_I )_w^* ( \hat{A} )_{w'}^*\hbox {Tr}((\hat{\pi }_{A}^l \otimes \mathbb {I}) (\mathbb {I} \otimes \hat{B}) \rho _{AB}) \nonumber \\&\qquad - ig ( \hat{\Pi }_I )_w ( \hat{A} )_{w'}\hbox {Tr}((\hat{\pi }_{A}^l \otimes \mathbb {I}) (\mathbb {I} \otimes \hat{B}) \rho _{AB}) \nonumber \\&\qquad - ig ( \hat{\Pi }_I )_w^* \hbox {Tr}( (\hat{\pi }_{A}^l \otimes \mathbb {I}) (\mathbb {I} \otimes \hat{B}) \rho _{AB} ( \hat{A} \otimes \mathbb {I})) \nonumber \\&\qquad + ig ( \hat{\Pi }_I )_w \hbox {Tr}( (\hat{\pi }_{A}^l \otimes \mathbb {I}) (\mathbb {I} \otimes \hat{B}) (\hat{A} \otimes \mathbb {I}) \rho _{AB} ) \bigg ] \nonumber \\&\quad = \frac{1}{\hbox {Tr}((\hat{\pi }_{A}^l \otimes \mathbb {I}) \rho _{AB})} \bigg [ \hbox {Tr}((\hat{\pi }_{A}^l \otimes \mathbb {I}) (\mathbb {I} \otimes \hat{B}) \rho _{AB}) \nonumber \\&\qquad - ig \hbox {Re} ( \hat{\Pi }_I )_w (2 i \hbox {Im} ( \hat{A} )_{w'}\hbox {Tr}((\hat{\pi }_{A}^l \otimes \mathbb {I}) (\mathbb {I} \otimes \hat{B}) \rho _{AB}) \nonumber \\&\qquad - \hbox {Tr}((\hat{\pi }_{A}^l \otimes \mathbb {I}) (\mathbb {I} \otimes \hat{B}) [(\hat{A} \otimes \mathbb {I}), \rho _{AB}] ))\nonumber \\&\qquad + g \hbox {Im} ( \hat{\Pi }_I )_w ( 2 \hbox {Re} ( \hat{A} )_{w'} \hbox {Tr}((\hat{\pi }_{A}^l \otimes \mathbb {I}) (\mathbb {I} \otimes \hat{B}) \rho _{AB}) \nonumber \\&\qquad + \hbox {Tr}((\hat{\pi }_{A}^l \otimes \mathbb {I}) (\mathbb {I} \otimes \hat{B}) \{ (\hat{A} \otimes \mathbb {I}), \rho _{AB} \} ))\bigg ], \end{aligned}$$
    (B5)

    where [xy] and \(\{x,y\} \) denote the commutator and the anticommutator, respectively.

Appendix C: Algebraic details—Proof

  1. 1.

    Now we proceed to prove that denominators of the real and imaginary parts of the weak value do not go to zero for generic choices of \( \hat{A} \) and \( \hat{B} \), the latter of which is made to satisfy constraints on the set derived above. Considering the extreme case, when all of the \( \rho _{ij} = 0 \) for a \( 2 \otimes 2 \) resource state, \( \hat{B} = \begin{bmatrix} b_{11} &{} b_{12} \\ b_{12}^* &{} b_{22} \end{bmatrix} \), \( \hat{A} = \begin{bmatrix} a_{11} &{} a_{12} \\ a_{12}^* &{} a_{22} \end{bmatrix} \), \( \hat{\pi }^l_A = {|{\psi }\rangle } {\langle {\psi }|} \) (where \( {|{\psi }\rangle } = p_1 {|{0}\rangle } + p_2 {|{1}\rangle } \)), \( p_1 \equiv p_{1R} + i p_{1I} \), \( p_2 \equiv p_{2R} + i p_{2I} \), and \( a_{12} \equiv a_{12R} + i a_{12I} \), denominator of real part of the weak value is given by \( b_{22} g (a_{12} p_2 p_1 + (2 p_2 (a_{12I} p_{1I} p_{2I} + a_{12R} p_{1R} p_{2I} - a_{12R} p_{1I} p_{2R} + a_{12I} p_{1R} p_{2R}) - i p_1 a_{12}^*) i p_2^* \) and denominator of the imaginary part of the weak value is given by \( a_{22} b_{22} - a_{22} b_{22}^2 - a_{22} b_{12} b_{12}^* \). Clearly, both of these are nonzero for any choice of observables \( \hat{A} \), \( \hat{B} \), and \( \hat{p}_1 \) including those which are the set of observables.

  2. 2.

    For a \( 2 \times 2 \) state \( \rho _{AB} \), we take \( \hat{B} \) to be a spin-1/2 observable \( \hat{n}.\hat{\sigma } \). Since \( \hat{B}^2 = 1 \) and \( \hbox {Tr}_A( (\hat{A} \otimes \mathbb {1}) \rho _{AB} ) = \hbox {Tr}( \hat{A} \rho _{A}^\mathrm{{in}} ) \), when we equate denominator of the imaginary part (Eq. 4) to zero, we find the condition \( \hbox {Tr}( \hat{B} \rho _B^\mathrm{{in}} ) = 1 \). This is satisfied when Bob’s reduced state \( \rho _{B}^\mathrm{{in}} \)—when it is pure—is an eigenstate of \( \hat{B} \). So to ensure \( \hbox {Tr}( \hat{B} \rho _B^\mathrm{{in}} ) \ne 1 \), set of observables \( \hat{B} \) must exclude the observable whose “up” eigenstate is \( \rho _{B}^\mathrm{{in}} \). When \( \rho _{B}^\mathrm{{in}} \) is a mixed state, the observable set \( \hat{B} \) must be such that it has the elements of a complete observable basis set \( \{\hat{n_1}.\hat{\sigma }, \hat{n_2}.\hat{\sigma }, \hat{n_3}.\hat{\sigma }\} \) such that \( \hat{n_1} \perp \hat{n_2} \perp \hat{n_3} \).

  3. 3.

    Consider spin-1/2 observables \( B_\alpha = (1/\sqrt{n_{1\alpha }^2 + n_{2\alpha }^2 + n_{3\alpha }^2)} {\mathbf {n}}_{\alpha }.{\mathbf {\sigma }} \), \( B_\beta = (1/\sqrt{n_{1\beta }^2 + n_{2\beta }^2 + n_{3\beta }^2)} {\mathbf {n}}_{\beta }.{\mathbf {\sigma }} \), and \( B_\gamma = (1/\sqrt{n_{1\gamma }^2 + n_{2\gamma }^2 + n_{3\gamma }^2)} {\mathbf {n}}_{\gamma }.{\mathbf {\sigma }} \). Solving the set of equations \( \hbox {Tr}(B_\alpha \rho ) = \hbox {Tr}(B_\alpha \rho '); \hbox {Tr}(B_\beta \rho ) = \hbox {Tr}(B_\beta \rho '); \hbox {Tr}(B_\gamma \rho ) = \hbox {Tr}(B_\gamma \rho ') \) (where \( \rho \) and \( \rho ' \) are general \( 2 \times 2 \) density matrices) leads to \( \rho = \rho ' \). This is easily extended to higher dimensions by considering higher dimensional versions of Pauli matrices [81, 82].

  4. 4.

    Substituting \( \rho _{AB} = \rho _{A} \otimes \rho _{B} \) in Eq. (A2), which corresponds to the first set of experimental runs (imaginary part), implies:

    $$\begin{aligned} \rho _{B}^N= & {} \frac{\rho _{B}^{un}}{\hbox {Tr}(\rho _B^{un})}\approx \frac{\rho _B - 2 g \hbox {Im} ( \hat{\Pi }_I )_w \hbox {Tr}_{A} ((\hat{A} \otimes \mathbb {I}) \rho _{A} \otimes \rho _{B}) }{ \bigg (\hbox {Tr}(\rho _B) - 2 g \hbox {Im} ( \hat{\Pi }_I )_w \hbox {Tr}((\hat{A} \otimes \mathbb {I}) \rho _{A} \otimes \rho _{B}) \bigg )} \nonumber \\= & {} \frac{(1 - 2 g \hbox {Im} ( \hat{\Pi }_I )_w \hbox {Tr}_{A} (\hat{A} \rho _{A}) ) \rho _B}{(1 - 2 g \hbox {Im} ( \hat{\Pi }_I )_w \hbox {Tr}_A (\hat{A} \rho _{A} ) ) \hbox {Tr}_B \rho _{B}} \nonumber \\= & {} \rho _B. \end{aligned}$$
    (C1)
  5. 5.

    For real part of the weak value, we consider

    $$\begin{aligned} \hbox {Re} ( \hat{\Pi }_I )_w= & {} \langle \hat{B} \rangle ^\mathrm{{Re}}_f \times \hbox {Tr}((\hat{\pi }_A^l \otimes \mathbb {1}) \rho _{AB}) - \hbox {Tr}((\hat{\pi }_A^l \otimes \hat{B}) \rho _{AB}) \nonumber \\&- g \hbox {Im}( \hat{\Pi }_I )_w \big (2 \hbox {Re} ( \hat{A} )_{w'} \hbox {Tr}((\hat{\pi }_A^l \otimes \hat{B}) \rho _{AB}) \nonumber \\&+ \hbox {Tr}((\hat{\pi }_A^l \otimes \hat{B}) \{(\hat{A} \otimes \mathbb {1}),\rho _{AB}\} ) \big ) = 0. \end{aligned}$$
    (C2)

    This leads to

    $$\begin{aligned} \langle \hat{B} \rangle ^\mathrm{{Re}}_f= & {} \frac{\hbox {Tr}((\hat{\pi }_A^l \otimes \hat{B}) \rho _{AB})}{\hbox {Tr}((\hat{\pi }_A^l \otimes \mathbb {1}) \rho _{AB})}\nonumber \\&+ g \hbox {Im} ( \hat{\Pi }_I )_w \left[ \frac{\hbox {Tr}((\hat{\pi }_A^l \hat{A} \otimes \mathbb {1})\rho _{AB})}{\hbox {Tr}((\hat{\pi }_A^l \otimes \mathbb {1}) \rho _{AB})} + \frac{\hbox {Tr}((\hat{A} \hat{\pi }_A^l \otimes \mathbb {1})\rho _{AB}^\dagger )}{\hbox {Tr}((\hat{\pi }_A^l \otimes \mathbb {1}) \rho _{AB}^\dagger )} \right] \nonumber \\&\frac{\hbox {Tr}((\hat{\pi }_A^l \otimes \hat{B}) \rho _{AB})}{\hbox {Tr}((\hat{\pi }_A^l \otimes \mathbb {1}) \rho _{AB})}\nonumber \\&+ g \hbox {Im} ( \hat{\Pi }_I )_w \left[ \frac{\hbox {Tr}((\hat{\pi }^l_A \hat{A} \otimes \hat{B}) \rho _{AB}) + \hbox {Tr}((\hat{A} \hat{\pi }^l_A \otimes \hat{B}) \rho _{AB})}{\hbox {Tr}((\hat{\pi }_A^l \otimes \mathbb {1}) \rho _{AB})} \right] , \end{aligned}$$
    (C3)

    For the lth projector (total p projectors on the Hilbert space of same dimensions), \( E_l \equiv \hbox {Tr}((\hat{\pi }_A^l \otimes \hat{B}) \rho _{AB}) \), \( N_l \equiv \hbox {Tr}((\hat{\pi }_A^l \otimes \mathbb {1}) \rho _{AB}) \), and \( E \equiv \hbox {Tr}(\hat{B} \rho _B^\mathrm{{in}}) = \hbox {Tr}((\mathbb {1}\otimes \hat{B}) \rho _{AB}) \). We have \( \sum _{l=1}^p E_l = E \). Substituting these entities in Eq. (C3) and replacing terms in the brackets corresponding to the projectors with \( T1_l \) and \( T2_l \), respectively, we find:

    $$\begin{aligned}&\langle \hat{B} \rangle ^\mathrm{{Re}}_f = E_l/N_l + g \hbox {Im} ( \hat{\Pi }_I )_w [T1_l] E_l/N_l + g \hbox {Im} ( \hat{\Pi }_I )_w [T2_l]\nonumber \\&\quad \implies \sum _{l=1}^p N_l \langle \hat{B} \rangle ^\mathrm{{Re}}_f = \sum _{l=1}^p E_l\nonumber \\&\quad + g \hbox {Im} ( \hat{\Pi }_I )_w \sum _{l=1}^p [T1_l] E_l + g \hbox {Im} ( \hat{\Pi }_I )_w \sum _{l=1}^p [T2_l] N_l \end{aligned}$$
    (C4)

    Since \( \sum _{l=1}^p = \hat{\pi }^l_A = \mathbb {1}\), \( \sum _{l=1}^p N_l = \hbox {Tr}(\rho _{AB}) = 1 \). Therefore,

    $$\begin{aligned}&\langle \hat{B} \rangle ^\mathrm{{Re}}_f = E + g \hbox {Im}\langle \hat{\Pi }_I \rangle _w \sum _{l=1}^p [T1_l] E_l + g \hbox {Im} \langle \hat{\Pi }_I \rangle _w \sum _{l=1}^p [T2_l] N_l \end{aligned}$$
    (C5)
  6. 6.

    Substituting \( \rho _{AB} = \rho _A \otimes \rho _B \) in Eq. (B3), corresponding to the second set of experimental runs (real part), implies:

    $$\begin{aligned}&\rho _{B}^N = \frac{\rho _{B}^{un}}{\hbox {Tr}(\rho _B^{un})}\nonumber \\&\quad \approx \frac{\hbox {Tr}_{I} (\hat{\pi }_{I}^v \rho _{I}) ( ( \hbox {Tr}_{A} (\hat{\pi }_{A}^l \rho _{A}) \rho _B - ig ( \hat{\Pi }_I )_w^* \hbox {Tr}_{A}( \hat{\pi }_{A}^l \rho _{A} \hat{A} ) \rho _B + ig ( \hat{\Pi }_I )_w \hbox {Tr}_{A} ( \hat{\pi }_{A}^l \hat{A} \rho _{A} ) \rho _B ))}{\hbox {Tr}_{I} (\hat{\pi }_{I}^v \rho _{I}) \hbox {Tr}(\rho _B) ( ( \hbox {Tr}_{A} (\hat{\pi }_{A}^l \rho _{A}) - ig ( \hat{\Pi }_I )_w^* \hbox {Tr}_{A}( \hat{\pi }_{A}^l \rho _{A} \hat{A} ) + ig ( \hat{\Pi }_I )_w \hbox {Tr}_{A} ( \hat{\pi }_{A}^l \hat{A} \rho _{A} ) ))} \nonumber \\&\quad = \frac{ \hbox {Tr}_{I} (\hat{\pi }_{I}^v \rho _{I}) ( ( \hbox {Tr}_{A} (\hat{\pi }_{A}^l \rho _{A}) - ig ( \hat{\Pi }_I )_w^* \hbox {Tr}_{A}( \hat{\pi }_{A}^l \rho _{A} \hat{A} ) + ig ( \hat{\Pi }_I )_w \hbox {Tr}_{A} ( \hat{\pi }_{A}^l \hat{A} \rho _{A} ) )) \rho _B}{\hbox {Tr}_{I} (\hat{\pi }_{I}^v \rho _{I}) ( ( \hbox {Tr}_{A} (\hat{\pi }_{A}^l \rho _{A}) - ig ( \hat{\Pi }_I )_w^* \hbox {Tr}_{A}( \hat{\pi }_{A}^l \rho _{A} \hat{A} ) + ig ( \hat{\Pi }_I )_w \hbox {Tr}_{A} ( \hat{\pi }_{A}^l \hat{A} \rho _{A} ) ))} \nonumber \\&\quad = \rho _B. \end{aligned}$$
    (C6)

    Like in case of the first set of experiments, here too, Bob’s state contains no signature of the weak measurement performed by Alice if \( \rho _{AB} \) is a product state.

Appendix D: Algebraic details—Bell-diagonal state as resource

  1. 1.

    Imaginary part:

    (D1)

    Here, \( \langle \rangle ^\mathrm{{Im}} \) represents expectation value obtained in the set of experiments which correspond to obtaining the imaginary part of the weak value.

  2. 2.

    Real part:

    (D2)

    Here too, \( \langle \rangle ^\mathrm{{Re}} \) represents expectation value obtained in the set of experiments which correspond to obtaining the real part of the weak value.

  3. 3.

    Number of classical bits to be communicated:

    The total state after weak interaction is \( \rho _{twk} = U \rho _{I} \otimes \rho _{AB} U^\dagger \approx \rho _{I} \otimes \rho _{AB} + ig [{|{a_k}\rangle }{\langle {a_k}|}, \rho _{I}] \otimes [\hat{A} \otimes \mathbb {I}, \rho _{AB}] \). Similarly, \( \rho _{twk}^2 = U \rho _{I}^2 \otimes \rho _{AB}^2 U^\dagger \approx \rho _{I}^2 \otimes \rho _{AB}^2 + ig {|{a_k}\rangle }{\langle {a_k}|} \rho _{I}^2 \otimes ( \hat{A} \otimes \mathbb {I} \rho _{AB}^2 ) - ig \rho _{I}^2 {|{a_k}\rangle }{\langle {a_k}|} \otimes ( \rho _{AB}^2 \hat{A} \otimes \mathbb {I}) \). Here, we have chosen \( \hat{\Pi }^k_I = {|{a_k}\rangle }{\langle {a_k}|} \). Substituting \( \hat{\pi }_{I}^v = {|{b_0}\rangle } {\langle {b_0}|} = (1/d) \sum _{a,b = 0}^{d-1} {|{a}\rangle }{\langle {b}|} \) and \( \rho _{I}^2 = \rho _{I} = \sum _{a,b = 0}^{d-1} \psi _a \psi _b^*{|{a}\rangle }{\langle {b}|} \) into Eq. (8), where the first and second terms in the parenthesis correspond to post-selection probabilities for the first and second set of experimental runs, respectively, we get:

    $$\begin{aligned} C= & {} N \sum _{k = 0}^{d-1} \bigg [ \hbox {Tr}( \hat{\pi }_{I}^v \rho _{twk}^2 ) + \hbox {Tr}( ( \hat{\pi }_{I}^v \otimes \hat{\pi }_{A}^l \otimes \mathbb {I}) \rho _{twk}^2 ) \bigg ] \nonumber \\\approx & {} N \sum _{k = 0}^{d-1} \bigg [ \hbox {Tr}( \hat{\pi }_{I}^v \rho _I \otimes \rho _{AB}^2 + i g \hat{\pi }_{I}^v {|{a_k}\rangle }{\langle {a_k}|} \rho _{I} \otimes ( \hat{A} \otimes \mathbb {I} \rho _{AB}^2 ) - i g \hat{\pi }_{I}^v \rho _{I} {|{a_k}\rangle }\nonumber \\&\qquad {\langle {a_k}|} \otimes ( \rho _{AB}^2\hat{A} \otimes \mathbb {I} ) ) + \hbox {Tr}( \hat{\pi }_{I}^v \rho _I \otimes ( (\hat{\pi }^l_A \otimes \mathbb {I}) \rho _{AB}^2 )\nonumber \\&\quad + ig \hat{\pi }_{I}^v {|{a_k}\rangle }{\langle {a_k}|} \rho _{I} \otimes (\hat{\pi }_{A}^l \otimes \mathbb {I}) ( \hat{A} \otimes \mathbb {I} \rho _{AB}^2) \nonumber \\&- ig \hat{\pi }_{I}^v \rho _{I} {|{a_k}\rangle }{\langle {a_k}|} \otimes (\hat{\pi }_{A}^l \otimes \mathbb {I}) ( \rho _{AB}^2 \hat{A} \otimes \mathbb {I}) ) \bigg ] \nonumber \\= & {} N \sum _{k = 0}^{d-1} \bigg [ \hbox {Tr}( \hat{\pi }_{I}^v \rho _I ) \hbox {Tr}( \rho _{AB}^2 ) + i g \hbox {Tr}( \hat{\pi }_{I}^v {|{a_k}\rangle }{\langle {a_k}|} \rho _{I} ) \hbox {Tr}( \hat{A} \otimes \mathbb {I} \rho _{AB}^2 ) \nonumber \\&\quad - ig \hbox {Tr}( \hat{\pi }_{I}^v \rho _{I} {|{a_k}\rangle }{\langle {a_k}|} ) \hbox {Tr}( \rho _{AB}^2 \hat{A} \otimes \mathbb {I} ) + \hbox {Tr}( \hat{\pi }_{I}^v \rho _I ) \hbox {Tr}( (\hat{\pi }^l_A \otimes \mathbb {I}) \rho _{AB}^2 )\nonumber \\&\quad + ig \hbox {Tr}( \hat{\pi }_{I}^v {|{a_k}\rangle }{\langle {a_k}|} \rho _{I} ) \hbox {Tr}(\hat{\pi }_{A}^l \hat{A} \otimes \mathbb {I} \rho _{AB}^2)\nonumber \\&\quad - ig \hbox {Tr}( \hat{\pi }_{I}^v \rho _{I} {|{a_k}\rangle }{\langle {a_k}|} ) \hbox {Tr}( (\hat{\pi }_{A}^l \otimes \mathbb {I}) ( \rho _{AB}^2 \hat{A} \otimes \mathbb {I}) ) \bigg ] \nonumber \\= & {} N \bigg [ \sum _{k = 0}^{d-1} ( \hbox {Tr}( \hat{\pi }_{I}^v \rho _I ) \hbox {Tr}( \rho _{AB}^2 ) ) + i g \hbox {Tr}\left( \hat{\pi }_{I}^v \sum _{k = 0}^{d-1} {|{a_k}\rangle }{\langle {a_k}|} \rho _{I} \right) \hbox {Tr}( \hat{A} \otimes \mathbb {I} \rho _{AB}^2 ) \nonumber \\&\quad - i g \hbox {Tr}\left( \hat{\pi }_{I}^v \rho _{I} \sum _{k = 0}^{d-1} {|{a_k}\rangle }{\langle {a_k}|} \right) \hbox {Tr}\left( \rho _{AB}^2 \hat{A} \otimes \mathbb {I} \right) \nonumber \\&\quad + \sum _{k = 0}^{d-1} \hbox {Tr}( \hat{\pi }_{I}^v \rho _I ) \hbox {Tr}( (\hat{\pi }^l_A \otimes \mathbb {I}) \rho _{AB}^2 )\nonumber \\&\quad + ig \hbox {Tr}\left( \hat{\pi }_{I}^v \sum _{k = 0}^{d-1} {|{a_k}\rangle }{\langle {a_k}|} \rho _{I} \right) \hbox {Tr}(\hat{\pi }_{A}^l \hat{A} \otimes \mathbb {I} \rho _{AB}^2) \nonumber \\&\quad - ig \hbox {Tr}\left( \hat{\pi }_{I}^v \rho _{I} \sum _{k = 0}^{d-1} {|{a_k}\rangle }{\langle {a_k}|} \right) \hbox {Tr}( (\hat{\pi }_{A}^l \otimes \mathbb {I}) ( \rho _{AB}^2 \hat{A} \otimes \mathbb {I}) ) \bigg ]; \end{aligned}$$
    (D3)

    since \(\sum _{k = 0}^{d-1} {|{a_k}\rangle }{\langle {a_k}|} = \mathbb {I}\) and \(\sum _{k = 0}^{d-1} 1 = d \), we have,

    $$\begin{aligned} C\approx & {} N \bigg [ d \hbox {Tr}( \hat{\pi }_{I}^v \rho _I ) \hbox {Tr}( \rho _{AB}^2 ) + i g \hbox {Tr}( \hat{\pi }_{I}^v \rho _{I} ) \hbox {Tr}( \hat{A} \otimes \mathbb {I} \rho _{AB}^2 ) \nonumber \\&\quad - i g \hbox {Tr}( \hat{\pi }_{I}^v \rho _{I} ) \hbox {Tr}( \rho _{AB}^2 \hat{A} \otimes \mathbb {I} ) \nonumber \\&\quad + d \hbox {Tr}( \hat{\pi }_{I}^v \rho _I ) \hbox {Tr}( (\hat{\pi }^l_A \otimes \mathbb {I}) \rho _{AB}^2 ) + ig \hbox {Tr}( \hat{\pi }_{I}^v \rho _{I} ) \hbox {Tr}(\hat{\pi }_{A}^l \hat{A} \otimes \mathbb {I} \rho _{AB}^2) \nonumber \\&\quad - ig \hbox {Tr}( \hat{\pi }_{I}^v \rho _{I} ) \hbox {Tr}( (\hat{\pi }_{A}^l\otimes \mathbb {I}) ( \rho _{AB}^2 \hat{A} \otimes \mathbb {I}) ) \bigg ]. \end{aligned}$$
    (D4)

    Substituting \( \hat{A} = \begin{bmatrix} a_{11} &{} a_{12} \\ a_{12}* &{} a_{22} \end{bmatrix} \), and \( \hat{\pi }_A^l = {|{\sigma _{zA} = -1}\rangle }{\langle {\sigma _{zA} = -1}|} \), we get

    $$\begin{aligned} C\approx & {} N [d \hbox {Tr}( \hat{\pi }_{I}^v \rho _I ) \hbox {Tr}( \rho _{AB}^2 )+ (d/2) \hbox {Tr}( \hat{\pi }_{I}^v \rho _I ) \hbox {Tr}( \rho _{AB}^2 )] \nonumber \\= & {} (3/2) N d \hbox {Tr}( \hat{\pi }_{I}^v \rho _I ) \hbox {Tr}( \rho _{AB}^2 ). \end{aligned}$$
    (D5)

    The post-selection probabilities corresponding to the first and second runs of the protocol are represented by the first and second terms in the parenthesis, respectively. As expected from the simultaneous success probability requirement, in the second set of experimental runs, post-selection succeeds exactly half the number of times it does in the first set. Considering the system state to be transferred as \( \rho _I = {|{\psi }\rangle }{\langle {\psi }|} = \sum _{k=0}^{d-1} a_k a_k^* {|{a_k}\rangle } {\langle {a_k}|} \), we have \( C \propto \hbox {Tr}(\hat{\pi }^v_I \rho _I) = \hbox {Tr}({|{b_0}\rangle } {\langle {b_0}|} \sum _{k=0}^{d-1} a_k^* a_l {|{a_l}\rangle } {\langle {a_k}|} ) \!=\! \hbox {Tr}((1/d) \sum _{a,b = 0}^{d-1} {|{a}\rangle } {\langle {b}|} \sum _{k,l=0}^{d-1} a_k^* a_l {|{a_l}\rangle } {\langle {a_k}|} ) \!= (1/d) \sum _{a,b=0}^{d-1} \sum _{k=0}^{d-1} a_k^* a_l {\langle {b}\rangle }{a_l} {\langle {a_k}\rangle }{a} = (1/d) \sum _{k=0}^{d-1} \sum _{a,b=0}^{d-1} a_k^* a_l \delta _{b a_l} \delta {a_k a} = \sum _{a,b = 0}^{d - 1} a_b^* a_a = 0 \) (because \( {\langle {b}\rangle }{a_k} = \delta _{b a_k} \) and \( {\langle {a_k}\rangle }{a} = \delta _{a a_k} \)). The solution space for \( \sum _{k = 0}^{d - 1} a_k = 0 \) is negligible compared to rest of the possibilities. Therefore, the success probability is unlikely to go to zero for any state of interest that is to be transferred.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pande, V.R., Kanjilal, S. Quantum information transfer using weak measurements and any non-product resource state. Quantum Inf Process 21, 106 (2022). https://doi.org/10.1007/s11128-022-03448-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11128-022-03448-2

Keywords

Navigation