Skip to main content
Log in

Characterization of QUBO reformulations for the maximum k-colorable subgraph problem

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

Quantum devices can be used to solve constrained combinatorial optimization (COPT) problems thanks to the use of penalization methods to embed the COPT problem’s constraints in its objective to obtain a quadratic unconstrained binary optimization (QUBO) reformulation of the COPT. However, the particular way in which this penalization is carried out affects the value of the penalty parameters, as well as the number of additional binary variables that are needed to obtain the desired QUBO reformulation. In turn, these factors substantially affect the ability of quantum computers to efficiently solve these constrained COPT problems. This efficiency is the key toward the goal of using quantum computers to solve constrained COPT problems more efficiently than with classical computers. Along these lines, we consider an important constrained COPT problem, namely the maximum k-colorable subgraph (MkCS) problem, in which the aim is to find an induced k-colorable subgraph with maximum cardinality in a given graph. This problem arises in channel assignment in spectrum sharing networks, VLSI design, human genetic research, and cybersecurity. We derive two QUBO reformulations for the MkCS problem and fully characterize the range of the penalty parameters that can be used in the QUBO reformulations. Further, one of the QUBO reformulations of the MkCS problem is obtained without the need to introduce additional binary variables. To illustrate the benefits of obtaining and characterizing these QUBO reformulations, we benchmark different QUBO reformulations of the MkCS problem by performing numerical tests on D-Wave’s quantum annealing devices. These tests also illustrate the numerical power gained by using the latest D-Wave’s quantum annealing device.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20

Similar content being viewed by others

References

  1. Abello, J., Butenko, S., Pardalos, P.M., Resende, M.G.: Finding independent sets in a graph using continuous multivariable polynomial formulations. J. Glob. Optim. 21(2), 111–137 (2001)

    Article  MathSciNet  Google Scholar 

  2. Amin, M.: Effect of local minima on adiabatic quantum optimization. Phys. Rev. Lett. 100(13), 130503 (2008)

    Article  ADS  Google Scholar 

  3. Amin, M.H., Smirnov, A.Y., Dickson, N.G., Drew-Brook, M.: Approximate diagonalization method for large-scale hamiltonians. Phys. Rev. A 86(5), 052314 (2012)

    Article  ADS  Google Scholar 

  4. Bauckhage, C., Piatkowski, N., Sifa, R., Hecker, D., Wrobel, S.: A QUBO formulation of the \(k\)-medoids problem. In: LWDA, pp. 54–63 (2019)

  5. Berman P., Pelc, A.: Distributed probabilistic fault diagnosis for multiprocessor systems. In: [1990] Digest of Papers. Fault-Tolerant Computing: 20th International Symposium, pp. 340–346. IEEE (1990)

  6. Bernal, D.E., Booth, K.E., Dridi, R., Alghassi, H., Tayur, S., Venturelli, D.: Integer programming techniques for minor-embedding in quantum annealers. In: International Conference on Integration of Constraint Programming, Artificial Intelligence, and Operations Research, pp. 112–129. Springer (2020)

  7. Bomze, I.M., Budinich, M., Pardalos, P.M., Pelillo, M.: The maximum clique problem. In: Du, D.Z., Pardalos, P.M. (eds.) Handbook of Combinatorial Optimization, pp. 1–74. Kluwer Academic Publisher (1999)

  8. Boothby, K., Bunyk, P., Raymond, J., Roy, A.: Next-generation topology of D-Wave quantum processors (2020). arXiv preprint arXiv:2003.00133

  9. Boros, E., Hammer, P.L., Tavares, G.: Local search heuristics for quadratic unconstrained binary optimization (QUBO). J. Heuristics 13(2), 99–132 (2007)

    Article  Google Scholar 

  10. Brush, S.G.: History of the Lenz–Ising model. Rev. Mod. Phys. 39(4), 883 (1967)

    Article  ADS  Google Scholar 

  11. Calude, C.S., Dinneen, M.J., Hua, R.: QUBO formulations for the graph isomorphism problem and related problems. Theor. Comput. Sci. 701, 54–69 (2017)

    Article  MathSciNet  Google Scholar 

  12. Campêlo, M., Corrêa, R.C.: A combined parallel Lagrangian decomposition and cutting-plane generation for maximum stable set problems. Electron. Notes Discrete Math. 36, 503–510 (2010)

    Article  Google Scholar 

  13. Chapuis, G., Djidjev, H., Hahn, G., Rizk, G.: Finding maximum cliques on a quantum annealer. In: Proceedings of the Computing Frontiers Conference, pp. 63–70 (2017)

  14. Choi, V.: Minor-embedding in adiabatic quantum computation: I. The parameter setting problem. Quantum Inf. Process. 7(5), 193–209 (2008)

    Article  MathSciNet  Google Scholar 

  15. Cipra, B.A.: The Ising model is NP-complete. SIAM News 33(6), 1–3 (2000)

    Google Scholar 

  16. Cole, S.: Ready or not, the quantum computing revolution is here. Military embedded systems (2018). http://mil-embedded.com/articles/ready-not-quantum-computing-revolution-here/

  17. Conforti, M., Cornuéjols, G., Zambelli, G., et al.: Integer Programming, vol. 271. Springer (2014)

  18. Crooks, G.E.: Performance of the quantum approximate optimization algorithm on the maximum cut problem (2018). arXiv preprint arXiv:1811.08419

  19. Cruz-Santos, W., Venegas-Andraca, S.E., Lanzagorta, M.: A QUBO formulation of minimum multicut problem instances in trees for D-Wave quantum annealers. Sci. Rep. 9(1), 1–12 (2019)

    Article  Google Scholar 

  20. Cullimore, M., Everitt, M.J., Ormerod, M., Samson, J., Wilson, R.D., Zagoskin, A.M.: Relationship between minimum gap and success probability in adiabatic quantum computing. J. Phys. A: Math. Theor. 45(50), 505305 (2012)

    Article  MathSciNet  Google Scholar 

  21. D-Wave (last accessed 01/19/2021). QPU-Specific Anneal Schedules. https://support.dwavesys.com/hc/en-us/articles/360005267253-QPU-Specific-Anneal-Schedules. Accessed on 09 Jan 2020

  22. Farhi, E., Goldstone, J., Gutmann, S.: A quantum approximate optimization algorithm (2014). arXiv preprint arXiv:1411.4028

  23. Farhi, E., Goldstone, J., Gutmann, S., Lapan, J., Lundgren, A., Preda, D.: A quantum adiabatic evolution algorithm applied to random instances of an NP-complete problem. Science 292(5516), 472–475 (2001)

    Article  MathSciNet  ADS  Google Scholar 

  24. Farhi, E., Goldstone, J., Gutmann, S., Sipser, M.: Quantum computation by adiabatic evolution. arXiv preprint arXiv:quant-ph/0001106 (2000)

  25. Farhi, E., Harrow, A.W.: Quantum supremacy through the quantum approximate optimization algorithm (2016). arXiv preprint arXiv:1602.07674

  26. Fouilhoux, P., Mahjoub, A.R.: Solving VLSI design and DNA sequencing problems using bipartization of graphs. Comput. Optim. Appl. 51(2), 749–781 (2012)

    Article  MathSciNet  Google Scholar 

  27. Fowler, A.: Improved QUBO formulations for D-Wave quantum computing. Ph.D. Thesis, University of Auckland (2017)

  28. Fuchs, F.G., Kolden, H.Ø., Aase, N.H., Sartor, G.: Efficient encoding of the weighted max \(k\)-cut on a quantum computer using QAOA. SN Comput. Sci. 2(2), 1–14 (2021)

    Article  Google Scholar 

  29. Glover, F., Kochenberger, G., Du, Y.: Quantum bridge analytics I: a tutorial on formulating and using QUBO models. 4OR 17(4), 335–371 (2019)

    Article  MathSciNet  Google Scholar 

  30. Goemans, M.X., Williamson, D.P.: Improved approximation algorithms for maximum cut and satisfiability problems using semidefinite programming. J. ACM (JACM) 42(6), 1115–1145 (1995)

    Article  MathSciNet  Google Scholar 

  31. Guerreschi, G.G., Matsuura, A.Y.: QAOA for max-cut requires hundreds of qubits for quantum speed-up. Sci. Rep. 9(1), 6903 (2019)

    Article  ADS  Google Scholar 

  32. Halldórsson, M.M., Halpern, J.Y., Li, L.E., Mirrokni, V.S.: On spectrum sharing games. Distrib. Comput. 22(4), 235–248 (2010)

    Article  Google Scholar 

  33. Harant, J.: Some news about the independence number of a graph. Discuss. Math. Graph Theory 20(1), 71–79 (2000)

    Article  MathSciNet  Google Scholar 

  34. Hua, R., Dinneen, M.J.: Improved QUBO formulation of the graph isomorphism problem. SN Comput. Sci. 1(1), 19 (2020)

    Article  Google Scholar 

  35. Januschowski, T., Pfetsch, M.E.: The maximum \(k\)-colorable subgraph problem and orbitopes. Discrete Optim. 8(3), 478–494 (2011)

    Article  MathSciNet  Google Scholar 

  36. Johnson, M.W., Amin, M.H., Gildert, S., Lanting, T., Hamze, F., Dickson, N., Harris, R., Berkley, A.J., Johansson, J., Bunyk, P., et al.: Quantum annealing with manufactured spins. Nature 473(7346), 194–198 (2011)

    Article  ADS  Google Scholar 

  37. Karp, R.M.: Reducibility among combinatorial problems. In: Complexity of Computer Computations, pp. 85–103. Springer (1972)

  38. King, A.D., Bernoudy, W.: Performance benefits of increased qubit connectivity in quantum annealing 3-dimensional spin glasses. (2020). arXiv preprint arXiv:2009.12479

  39. King, A.D., McGeoch, C.C.: Algorithm engineering for a quantum annealing platform. (2014). arXiv preprint arXiv:1410.2628

  40. King, J., Yarkoni, S., Nevisi, M.M., Hilton, J.P., McGeoch, C.C.: Benchmarking a quantum annealing processor with the time-to-target metric (2015). arXiv preprint arXiv:1508.05087

  41. Kuryatnikova, O., Sotirov, R., Vera, J.: The maximum \(k\)-colorable subgraph problem and related problems (2020). arXiv preprint arXiv:2001.09644

  42. Lasserre, J.B.: A max-cut formulation of 0/1 programs. Oper. Res. Lett. 44(2), 158–164 (2016)

    Article  MathSciNet  Google Scholar 

  43. Lippert, R., Schwartz, R., Lancia, G., Istrail, S.: Algorithmic strategies for the single nucleotide polymorphism haplotype assembly problem. Brief. Bioinform. 3(1), 23–31 (2002)

    Article  Google Scholar 

  44. Lovász, L.: On the Shannon capacity of a graph. IEEE Trans. Inf. Theory 25(1), 1–7 (1979)

    Article  MathSciNet  Google Scholar 

  45. Lucas, A.: Ising formulations of many NP problems. Front. Phys. 2, 5 (2014)

    Article  Google Scholar 

  46. Lund, C., Yannakakis, M.: The approximation of maximum subgraph problems. In: International Colloquium on Automata, Languages, and Programming, pp. 40–51. Springer (1993)

  47. Metz, C.: The next tech talent shortage: Quantum computing researchers. New York Times. https://www.nytimes.com/2018/10/21/technology/quantum-computing-jobs-immigration-visas.html. Accessed 21 Oct 2018

  48. Montanaro, A.: Quantum algorithms: an overview. NPJ Quantum Inf. 2(1), 1–8 (2016)

    Article  Google Scholar 

  49. Nannicini, G.: Performance of hybrid quantum-classical variational heuristics for combinatorial optimization. Phys. Rev. E 99(1), 013304 (2019)

    Article  MathSciNet  ADS  Google Scholar 

  50. Neven, H., Denchev, V.S., Drew-Brook, M., Zhang, J., Macready, W.G., Rose, G.: NIPS 2009 demonstration: binary classification using hardware implementation of quantum annealing. Quantum, pp. 1–17 (2009)

  51. Pajouh, F.M., Balasundaram, B., Prokopyev, O.A.: On characterization of maximal independent sets via quadratic optimization. J. Heuristics 19(4), 629–644 (2013)

    Article  Google Scholar 

  52. Papalitsas, C., Andronikos, T., Giannakis, K., Theocharopoulou, G., Fanarioti, S.: A QUBO model for the traveling salesman problem with time windows. Algorithms 12(11), 224 (2019)

    Article  MathSciNet  Google Scholar 

  53. Poljak, S., Tuza, Z.: Maximum cuts and large bipartite subgraphs. DIMACS Ser. 20, 181–244 (1995)

    MathSciNet  MATH  Google Scholar 

  54. Rieffel, E.G., Venturelli, D., O’Gorman, B., Do, M.B., Prystay, E.M., Smelyanskiy, V.N.: A case study in programming a quantum annealer for hard operational planning problems. Quantum Inf. Process. 14(1), 1–36 (2015)

    Article  ADS  Google Scholar 

  55. Roland, J., Cerf, N.J.: Quantum search by local adiabatic evolution. Phys. Rev. A 65(4), 042308 (2002)

    Article  ADS  Google Scholar 

  56. Rønnow, T.F., Wang, Z., Job, J., Boixo, S., Isakov, S.V., Wecker, D., Martinis, J.M., Lidar, D.A., Troyer, M.: Defining and detecting quantum speedup. Science 345(6195), 420–424 (2014)

    Article  ADS  Google Scholar 

  57. Ruan, Y., Marsh, S., Xue, X., Li, X., Liu, Z., Wang, J.: Quantum approximate algorithm for NP optimization problems with constraints (2020). arXiv preprint arXiv:2002.00943

  58. Semeniuk, I.: Understanding the Quantum Computing Revolution. The Globe and Mail (2017). https://www.theglobeandmail.com/report-on-business/rob-magazine/quantum-computing-technology-explained/article36397793/

  59. Singh, S.P.: The Ising model: brief introduction and its application. In: Solid State Physics-Metastable, Spintronics Materials and Mechanics of Deformable Bodies-Recent Progress. IntechOpen (2020)

  60. Stollenwerk, T., O’Gorman, B., Venturelli, D., Mandrà, S., Rodionova, O., Ng, H., Sridhar, B., Rieffel, E.G., Biswas, R.: Quantum annealing applied to de-conflicting optimal trajectories for air traffic management. IEEE Trans. Intell. Transp. Syst. 21(1), 285–297 (2019)

    Article  Google Scholar 

  61. Subramanian, A.P., Gupta, H., Das, S.R., Buddhikot, M.M.: Fast spectrum allocation in coordinated dynamic spectrum access based cellular networks. In: 2007 2nd IEEE International Symposium on New Frontiers in Dynamic Spectrum Access Networks, pp. 320–330. IEEE (2007)

  62. van Dam, E.R., Sotirov, R.: New bounds for the max-k-cut and chromatic number of a graph. Linear Algebra Appl. 488, 216–234 (2016)

    Article  MathSciNet  Google Scholar 

  63. Venturelli, D., Marchand, D., Rojo, G.: Job shop scheduling solver based on quantum annealing. In: Proceedings of the of ICAPS-16 Workshop on Constraint Satisfaction Techniques for Planning and Scheduling (COPLAS), pp. 25–34 (2016)

  64. Verma, A., Lewis, M.: Optimal quadratic reformulations of fourth degree pseudo-Boolean functions. Optim. Lett. 14(6), 1557–1569 (2020)

    Article  MathSciNet  Google Scholar 

  65. Verma, A., Lewis, M.: Penalty and partitioning techniques to improve performance of QUBO solvers. Discrete Optim., 100594 (2020). https://doi.org/10.1016/j.disopt.2020.100594

  66. Vyskočil, T., Pakin, S., Djidjev, H.N.: Embedding inequality constraints for quantum annealing optimization. In: International Workshop on Quantum Technology and Optimization Problems, pp. 11–22. Springer (2019)

  67. Wang, Z., Hadfield, S., Jiang, Z., Rieffel, E.G.: Quantum approximate optimization algorithm for maxcut: a fermionic view. Physi. Rev. A 97(2), 022304 (2018)

    Article  ADS  Google Scholar 

  68. Wocjan, P., Beth, T.: The 2-local Hamiltonian problem encompasses NP. Int. J. Quantum Inf. 1(03), 349–357 (2003)

    Article  Google Scholar 

  69. Yannakakis, M., Gavril, F.: The maximum \(k\)-colorable subgraph problem for chordal graphs. Inf. Process. Lett. 24(2), 133–137 (1987)

    Article  MathSciNet  Google Scholar 

  70. Yarkoni, S., Plaat, A., Back, T.: First results solving arbitrarily structured maximum independent set problems using quantum annealing. In: 2018 IEEE Congress on Evolutionary Computation (CEC), pp. 1–6. IEEE (2018)

  71. Zbinden, S., Bärtschi, A., Djidjev, H., Eidenbenz, S.: Embedding algorithms for quantum annealers with chimera and pegasus connection topologies. In: International Conference on High Performance Computing, pp. 187–206. Springer (2020)

Download references

Acknowledgements

This project has been carried out thanks to funding by the Defense Advanced Research Projects Agency (DARPA), ONISQ grant W911NF2010022, titled The Quantum Computing Revolution and Optimization: Challenges and Opportunities. The project was also supported by the Oak Ridge National Laboratory OLCF grant ENG121, which provided the authors with in-kind access to D-Wave’s quantum annealers. The second author acknowledges the support of the Center for Advanced Process Decision Making (CAPD) at Carnegie Mellon University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luis F. Zuluaga.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Data availability

The datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Quintero, R., Bernal, D., Terlaky, T. et al. Characterization of QUBO reformulations for the maximum k-colorable subgraph problem. Quantum Inf Process 21, 89 (2022). https://doi.org/10.1007/s11128-022-03421-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11128-022-03421-z

Keywords

Mathematics Subject Classification

Navigation