Skip to main content
Log in

Improved QUBO Formulation of the Graph Isomorphism Problem

  • Original Research
  • Published:
SN Computer Science Aims and scope Submit manuscript

Abstract

In this paper, we provide a practically efficient QUBO formulation for the Graph Isomorphism Problem that is suitable for quantum annealers such as those produced by D-Wave. After proving the correctness of our new method, based on exploiting vertex degree classes, we did some experimental work on a D-Wave 2X computer. We observe that for all “hard” graphs of 6 vertices, we save around 50–95% of the number of required physical qubits over the standard QUBO formulation that was given earlier by Calude et al. (Theor Comput Sci 701:54–69, 2017). We also provide some theoretical analysis showing that, for two random graphs with the same degree sequence, our new method substantially improves in qubit savings as the number of vertices increases beyond 6.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Notes

  1. Note that this publication refers to map size as ‘chain length’ which could be somewhat misleading since the set of physical qubits is not necessarily a path.

References

  1. Abbott AA, Calude CS, Dinneen MJ, Hua R. A hybrid quantum-classical paradigm to mitigate embedding costs in quantum annealing. 2018. arXiv preprint arXiv:1803.04340.

  2. Aharonov D, Van Dam W, Kempe J, Landau Z, Lloyd S, Regev O. Adiabatic quantum computation is equivalent to standard quantum computation. SIAM Rev. 2008;50(4):755–87.

    Article  MathSciNet  MATH  Google Scholar 

  3. Aharonov Y, Davidovich L, Zagury N. Quantum random walks. Phys Rev A. 1993;48(2):1687.

    Article  Google Scholar 

  4. Arora S, Barak B. Computational complexity: a modern approach. Cambridge: Cambridge University Press; 2009.

    Book  MATH  Google Scholar 

  5. Babai L. Graph isomorphism in quasipolynomial time. In: Proceedings of the forty-eighth annual ACM symposium on theory of computing; 20116. ACM, pp 684–697

  6. Barahona F. On the computational complexity of ising spin glass models. J Phys A Math Gen. 1982;15(10):3241.

    Article  MathSciNet  Google Scholar 

  7. Boixo S, Rønnow TF, Isakov SV, Wang Z, Wecker D, Lidar DA, Martinis JM, Troyer M. Evidence for quantum annealing with more than one hundred qubits. Nat Phys. 2014;10(3):218.

    Article  Google Scholar 

  8. Bollobás B. Degree sequences of random graphs. Discrete Math. 1981;33(1):1–19.

    Article  MathSciNet  MATH  Google Scholar 

  9. Bollobás B. Vertices of given degree in a random graph. J Gr Theory. 1982;6(2):147–55.

    Article  MathSciNet  MATH  Google Scholar 

  10. Boothby T, King AD, Roy A. Fast clique minor generation in chimera qubit connectivity graphs. Quant Inf Process. 2016;15(1):495–508.

    Article  MathSciNet  MATH  Google Scholar 

  11. Brush SG. History of the Lenz–Ising model. Rev Mod Phys. 1967;39(4):883.

    Article  Google Scholar 

  12. Cai J, Macready WG, Roy A. A practical heuristic for finding graph minors. 2014. arXiv preprint arXiv:1406.2741.

  13. Calude CS, Dinneen MJ, Hua R. QUBO formulations for the graph isomorphism problem and related problems. Report CDMTCS-499, Centre for Discrete Mathematics and Theoretical Computer Science, University of Auckland, Auckland, New Zealand, October 2016. https://www.cs.auckland.ac.nz/research/groups/CDMTCS/researchreports/download.php?selected-id=651.

  14. Calude CS, Dinneen MJ, Hua R. QUBO formulations for the graph isomorphism problem and related problems. Theor Comput Sci. 2017;701:54–69.

    Article  MathSciNet  MATH  Google Scholar 

  15. D-Wave Systems. D-Wave 2000Q\(^{TM}\). https://www.dwavesys.com/d-wave-two-system. 2017.

  16. D-Wave Systems, Inc. Developer guide for Python. Technical Report Release 2.4 09-1024A-B, 2017.

  17. D-Wave Systems, Inc. D-Wave problem-solving handbook. D-Wave user manual 09-1171A-A, 2018.

  18. D-Wave Systems, Inc. Technical description of the D-Wave quantum processing unit. D-Wave User Manual 09-1109A-N, 2019.

  19. Dinneen MJ, Hua R. Formulating graph covering problems for adiabatic quantum computers. In: Proceedings of the Australasian computer science week multiconference, ACSW ’17, pp. 18:1–18:10, New York, NY, USA, 2017. ACM.

  20. Emmert-Streib F, Dehmer M, Shi Y. Fifty years of graph matching, network alignment and network comparison. Inf Sci. 2016;346:180–97.

    Article  MathSciNet  MATH  Google Scholar 

  21. Farhi E, Goldstone J, Gutmann S, Lapan J, Lundgren A, Preda D. A quantum adiabatic evolution algorithm applied to random instances of an NP-complete problem. Science. 2001;292(5516):472–5.

    Article  MathSciNet  MATH  Google Scholar 

  22. Farhi E, Goldstone J, Gutmann S, Sipser M. Quantum computation by adiabatic evolution. 2000. arXiv preprint arXiv:quant-ph/0001106.

  23. Hagberg A, Schult D, Swart P, Conway D, Séguin-Charbonneau L, Ellison C, Edwards B, Torrents J. Networkx. high productivity software for complex networks. Webová strá nka https://networkx.lanl.gov/wiki, 2013.

  24. Hua R, Dinneen MJ. Improved QUBO formulation of the graph isomorphism problem. Report CDMTCS-539, Centre for Discrete Mathematics and Theoretical Computer Science, University of Auckland, Auckland, New Zealand, June 2019. https://www.cs.auckland.ac.nz/research/groups/CDMTCS/researchreports/download.php?selected-id=729.

  25. IBM. ILOG CPLEX optimization studio CPLEX user’s manual, 2017. https://www.ibm.com/analytics/data-science/prescriptive-analytics/cplex-optimizer.

  26. IBM. IBM Q. https://www.research.ibm.com/ibm-q/technology/devices/, 2019.

  27. Lindell S. A logspace algorithm for tree canonization. In: Proceedings of the twenty-fourth annual ACM symposium on Theory of computing. 1992. ACM, pp 400–404.

  28. Liu K. Solving optimization problems using adiabatic quantum computing. Master’s thesis, University of Auckland, 2018.

  29. Lubiw A. Some NP-complete problems similar to graph isomorphism. SIAM J Comput. 1981;10(1):11–21.

    Article  MathSciNet  MATH  Google Scholar 

  30. Mahasinghe A, Hua R, Dinneen MJ, Goyal R. Solving the Hamiltonian cycle problem using a quantum computer. In: Proceedings of the Australasian computer science week multiconference, ACSW 2019, New York, NY, USA, 2019. ACM, pp. 8:1–8:9.

  31. Catherine M. Adiabatic quantum computation and quantum annealing: theory and practice. Synth Lect Quant Comput. 2014;5:1–93.

    Google Scholar 

  32. Pudenz KL, Albash T, Lidar DA. Error-corrected quantum annealing with hundreds of qubits. Nat Commun. 2014;5:3243.

    Article  Google Scholar 

  33. Rønnow TF, Wang Z, Job J, Boixo S, Isakov SV, Wecker D, Martinis JM, Lidar DA, Troyer M. Defining and detecting quantum speedup. Science. 2014;345(6195):420–4.

    Article  Google Scholar 

  34. Rudinger K, Gamble JK, Bach E, Friesen M, Joynt R, Coppersmith SN. Comparing algorithms for graph isomorphism using discrete-and continuous-time quantum random walks. Journal of Computational and Theoretical Nanoscience. 2013;10(7):1653–61.

    Article  Google Scholar 

  35. Rudinger K, Gamble JK, Wellons M, Bach E, Friesen M, Joynt R, Coppersmith SN. Noninteracting multiparticle quantum random walks applied to the graph isomorphism problem for strongly regular graphs. Phys Rev A. 2012;86(2):022334.

    Article  Google Scholar 

  36. Shenvi N, Kempe J, Whaley KB. Quantum random-walk search algorithm. Phys Rev A. 2003;67(5):052307.

    Article  Google Scholar 

  37. William S et al. Sage mathematics software (version 7.0), 2016.

  38. Wang D, Kleinberg R. Analyzing quadratic unconstrained binary optimization problems via multicommodity flows. Discrete Appl Math. 2009;157(18):3746–53.

    Article  MathSciNet  MATH  Google Scholar 

  39. Wong E, Baur B, Quader S, Huang C-H. Biological network motif detection: principles and practice. Brief Bioinform. 2011;13(2):202–15.

    Article  Google Scholar 

  40. Zhou B, Pei J. Preserving privacy in social networks against neighborhood attacks. In: ICDE, vol. 8, pp. 506–515. Citeseer, 2008.

Download references

Acknowledgements

This project was supported in part by the Quantum Computing Research Initiatives at Lockheed Martin. We thank Cris Calude and the anonymous referee for useful comments on an earlier draft.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael J. Dinneen.

Ethics declarations

Conflict of interest:

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix: Drawing of Test Graphs

Appendix: Drawing of Test Graphs

figure a

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hua, R., Dinneen, M.J. Improved QUBO Formulation of the Graph Isomorphism Problem. SN COMPUT. SCI. 1, 19 (2020). https://doi.org/10.1007/s42979-019-0020-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s42979-019-0020-1

Keywords

Navigation