Skip to main content
Log in

A hybrid algorithm to solve linear systems of equations with limited qubit resources

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

The solution of linear systems of equations is a very frequent operation and thus important in many fields. The complexity using classical methods increases linearly with the size of equations. The HHL algorithm proposed by Harrow et al. achieves exponential acceleration compared with the best classical algorithm. However, it has a relatively high demand for qubit resources, and the solution \(\left| x \right\rangle\) is in a normalized form. Assuming that the eigenvalues of the coefficient matrix of the linear systems of equations can be represented perfectly by finite binary number strings, the hybrid iterative phase estimation algorithm (HIPEA) is designed based on the iterative phase estimation algorithm in this paper. The complexity is transferred to the measurement operation in an iterative way, and thus, the demand of qubit resources is reduced in our hybrid algorithm. Moreover, the solution is stored in a classical register instead of a quantum register, so the exact unnormalized solution can be obtained. The required qubit resources in the three variants of HIPEA are different. The first variant only needs one single ancillary qubit. The number of ancillary qubits in the second variant is equal to the number of nondegenerate eigenvalues of the coefficient matrix of linear systems of equations. The third variant is designed with a flexible number of ancillary qubits. The HIPEA algorithm proposed in this paper broadens the application range of quantum computation in solving linear systems of equations by avoiding the problem that quantum programs may not be used to solve linear systems of equations due to the lack of qubit resources.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Cai, X.D., Weedbrook, C., Su, Z.E., Chen, M.C., Gu, M., Zhu, M.J., Li, L., Le Liu, N., Lu, C.Y., Pan, J.W.: Experimental quantum computing to solve systems of linear equations. Phys. Rev. Lett. 110, 1–5 (2013). https://doi.org/10.1103/PhysRevLett.110.230501

    Article  Google Scholar 

  2. Harrow, A.W., Hassidim, A., Lloyd, S.: Quantum algorithm for linear systems of equations. Phys. Rev. Lett. (2009). https://doi.org/10.1103/PhysRevLett.103.150502

    Article  MathSciNet  Google Scholar 

  3. Schleich, P.: How to solve a linear system of equations using a quantum computer, Semin. Proj. (2019) 1–35. www.mathcces.rwth-aachen.de/_media/3teaching/00projects/schleich.pdf

  4. Shao, C.: Reconsider hhl algorithm and its related quantum machine learning algorithms. arXiv preprint arXiv:1803.01486 (2018)

  5. Dickens, J.: Quantum Computing Algorithms for Applied Linear Algebra (2019)

  6. Carrera Vázquez, A., Wörner, S., Hiptmair, R.: Quantum algorithm for solving tri-diagonal linear systems of equations, (2018) 1–24

  7. Duan, B., Yuan, J., Yu, C.H., Huang, J., Hsieh, C.Y.: A survey on HHL algorithm: from theory to application in quantum machine learning. Phys. Lett. Sect. A Gen. At. Solid State Phys. 384, 126595 (2020) https://doi.org/10.1016/j.physleta.2020.126595

  8. Preskill, J.: Quantum computing in the NISQ era and beyond. Quantum 2, 1–20 (2018). https://doi.org/10.22331/q-2018-08-06-79

    Article  Google Scholar 

  9. Lee, Y., Joo, J., Lee, S.: Hybrid quantum linear equation algorithm and its experimental test on IBM Quantum Experience. Sci. Rep. 9, 1–12 (2019). https://doi.org/10.1038/s41598-019-41324-9

    Article  ADS  Google Scholar 

  10. Bužek, V., Derka, R., Massar, S.: Optimal quantum clocks. Asymptot. Theory Quantum Stat. Inference Sel. Pap. (2005). https://doi.org/10.1142/9789812563071_0032

    Article  Google Scholar 

  11. Svore, K.M., Hastings, M.B., Freedman, M.: Faster phase estimation. Quantum Inf. Comput. 14, 306–328 (2014). https://doi.org/10.26421/QIC14.3-4-7

    Article  MathSciNet  Google Scholar 

  12. Cleve, R., Ekert, A., Macchiavello, C., Mosca, M.: Quantum algorithms revisited, Proc. R. Soc. A Math. Phys. Eng. Sci. 454, 339–354 (1998). https://doi.org/10.1098/rspa.1998.0164

    Article  MathSciNet  MATH  Google Scholar 

  13. Zhou, X.Q., Kalasuwan, P., Ralph, T.C., O’brien, J.L.: Calculating unknown eigenvalues with a quantum algorithm. Nat. Photonics. 7, 223–228 (2013). https://doi.org/10.1038/nphoton.2012.360

    Article  ADS  Google Scholar 

  14. Parasa, V., Perkowski, M.: Quantum phase estimation using multivalued logic. In: Proceedings of the 2011 41st IEEE International Symposium on Multiple-valued logic, ISMVL 2011. (2011) 224–229. https://doi.org/10.1109/ISMVL.2011.47

  15. O'Brien, T.E., Tarasinski, B., Terhal, B.M.: Quantum phase estimation of multiple eigenvalues for small-scale (noisy) experiments. New J. Phys. (2019). https://doi.org/10.1088/1367-2630/aafb8e

    Article  MathSciNet  Google Scholar 

  16. Wiebe, N., Granade, C.: Efficient Bayesian phase estimation. Phys. Rev. Lett. 117(1), 010503 (2016). https://doi.org/10.1103/PhysRevLett.117.010503

    Article  ADS  Google Scholar 

  17. O’Loan, C.J.: Iterative phase estimation. J. Phys. A Math. Theor. (2010). https://doi.org/10.1088/1751-8113/43/1/015301

    Article  MathSciNet  MATH  Google Scholar 

  18. Dobšíček, M., Johansson, G., Shumeiko, V., Wendin, G.: Arbitrary accuracy iterative quantum phase estimation algorithm using a single ancillary qubit: A two-qubit benchmark, Phys. Rev. A - At. Mol. Opt. Phys. 76, 1–4 (2007). https://doi.org/10.1103/PhysRevA.76.030306

    Article  Google Scholar 

  19. Liu, X.M., Luo, J., Sun, X.P.: Experimental realization of arbitrary accuracy iterative phase estimation algorithms on ensemble quantum computers. Chin. Phys. Lett. 24, 3316–3319 (2007). https://doi.org/10.1088/0256-307X/24/12/007

    Article  ADS  Google Scholar 

  20. Long, G.-L.: General quantum interference principle and duality computer. Commun. Theor. Phys. 45, 825 (2006). https://doi.org/10.1088/0253-6102/45/5/013

    Article  ADS  MathSciNet  Google Scholar 

  21. Long, G.L.: Duality Quantum Computing and Duality Quantum Information Processing. Int. J. Theor. Phys. 50, 1305–1318 (2011). https://doi.org/10.1007/s10773-010-0603-z

    Article  MathSciNet  MATH  Google Scholar 

  22. Shao, C., Li, Y., Li, H.: Quantum Algorithm Design: Techniques and Applications. J. Syst. Sci. Complex. 32, 375–452 (2019). https://doi.org/10.1007/s11424-019-9008-0

    Article  MathSciNet  MATH  Google Scholar 

  23. Wei, S., Li, H., Long, G.: A Full Quantum Eigensolver for Quantum Chemistry Simulations. Res. 2020, 1486935 (2020). https://doi.org/10.34133/2020/1486935

    Article  ADS  Google Scholar 

  24. Jin, S., Wu, S., Zhou, G., Li, Y., Li, L., Li, B., Wang, X.: A query-based quantum eigensolver. Quantum Eng. 2, e49 (2020). https://doi.org/10.1002/que2.49

    Article  Google Scholar 

  25. Gao, P., Li, K., Wei, S., Long, G.L.: Quantum second-order optimization algorithm for general polynomials. Sci. China Physics Mech. Astron. 64, 100311 (2021). https://doi.org/10.1007/s11433-021-1725-9

    Article  Google Scholar 

  26. Giovannetti, V., Lloyd, S., MacCone, L.: Quantum random access memory. Phys. Rev. Lett. 100, 1–4 (2008). https://doi.org/10.1103/PhysRevLett.100.160501

    Article  MathSciNet  MATH  Google Scholar 

  27. Giovannetti, V., Lloyd, S., MacCone, L.: Architectures for a quantum random access memory, Phys. Rev. A At. Mol. Opt. Phys. 78, 1–9 (2008). https://doi.org/10.1103/PhysRevA.78.052310

    Article  MATH  Google Scholar 

  28. Childs, A.M., Wiebe, N.: Hamiltonian simulation using linear combinations of unitary operations, Quantum Inf. Comput. 12, 901–924 (2012). https://doi.org/10.26421/qic12.11-12-1

    Article  MathSciNet  MATH  Google Scholar 

  29. Berry, D.W., Childs, A.M.: Black-box hamiltonian simulation and unitary implementation. Quantum Inf. Comput. 12, 29–62 (2012). https://doi.org/10.26421/QIC12.1-2

    Article  MathSciNet  MATH  Google Scholar 

  30. Nielsen, M.A., Bremner, M.J., Dodd, J.L., Childs, A.M., Dawson, C.M.: Universal simulation of Hamiltonian dynamics for quantum systems with finite-dimensional state spaces, Phys. Rev. A - At. Mol. Opt. Phys. 66, 1–12 (2002). https://doi.org/10.1103/PhysRevA.66.022317

    Article  Google Scholar 

  31. Low, G.H., Chuang, I.L.: Optimal Hamiltonian Simulation by Quantum Signal Processing. Phys. Rev. Lett. 118, 1–5 (2017). https://doi.org/10.1103/PhysRevLett.118.010501

    Article  MathSciNet  Google Scholar 

  32. Santagati, R., Wang, J., Gentile, A.A., Paesani, S., Wiebe, N., McClean, J.R., Morley-Short, S., Shadbolt, P.J., Bonneau, D., Silverstone, J.W., Tew, D.P., Zhou, X., O’Brien, J.L., Thompson, M.G.: Witnessing eigenstates for quantum simulation of Hamiltonian spectra. Sci. Adv. 4, 1–12 (2018). https://doi.org/10.1126/sciadv.aap9646

    Article  Google Scholar 

  33. Berry, D.W., Ahokas, G., Cleve, R., Sanders, B.C.: Efficient quantum algorithms for simulating sparse hamiltonians. Commun. Math. Phys. 270, 359–371 (2007). https://doi.org/10.1007/s00220-006-0150-x

    Article  ADS  MathSciNet  MATH  Google Scholar 

  34. Long, G.-L.: Collapse-in and Collapse-out in Partial Measurement in Quantum Mechanics and its WISE Interpretation. Sci. China Physics Mech. Astron. 64, 280321 (2021). https://doi.org/10.1007/s11433-021-1716-y

    Article  ADS  Google Scholar 

  35. Clader, B.D., Jacobs, B.C., Sprouse, C.R.: Preconditioned quantum linear system algorithm. Phys. Rev. Lett. 110, 1–5 (2013). https://doi.org/10.1103/PhysRevLett.110.250504

    Article  Google Scholar 

  36. Dervovic, D., Herbster, M., Mountney, P., Severini, S., Usher, N., Wossnig, L.: Quantum linear systems algorithms: a primer. arXiv preprint arXiv:1802.08227 (2018)

Download references

Funding

National natural science foundation of china,61773359,Fang Gao,61720106009,Feng Shuang,61873317,Wei Cui

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Feng Shuang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This work was supported by the National Natural Science Foundation of China under Grants 61773359, 61720106009 and 61873317.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gao, F., Wu, G., Yang, M. et al. A hybrid algorithm to solve linear systems of equations with limited qubit resources. Quantum Inf Process 21, 111 (2022). https://doi.org/10.1007/s11128-021-03388-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11128-021-03388-3

Keywords

Navigation