Skip to main content
Log in

Contextuality-based quantum conferencing

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

Nonlocality inequalities for multi-party systems act as contextuality inequalities for single qudit systems of suitable dimensions (Heywood and Redhead in Found Phys 13(5):481–499, 1983; Abramsky and Brandenburger in New J Phys 13(11):113036, 2011). In this paper, we propose the procedure for adaptation of nonlocality-based quantum conferencing protocols (NQCPs) to contextuality-based QCPs (CQCPs). Unlike the NQCPs, the CQCPs do not involve nonlocal states. As an illustration of the procedure, we present a QCP based on Mermin’s contextuality inequality. As a significant improvement, we propose a QCP based on CHSH contextuality inequality involving only four-dimensional states irrespective of the number of parties sharing the key. The key generation rate of the latter is twice that of the former. Although CQCPs allow for an eavesdropping attack which has no analog in NQCPs, a way out of this attack is demonstrated. Finally, we examine the feasibility of experimental implementation of these protocols with orbital angular momentum states.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Notes

  1. For higher number of parties, calculations are not difficult, but become tedious. Hence, the choice of three Bobs.

References

  1. Grover, L.K.: Quantum mechanics helps in searching for a needle in a haystack. Phys. Rev. Lett. 79, 325–328 (1997)

    Article  ADS  Google Scholar 

  2. Deutsch, D., Jozsa, R.: Rapid solution of problems by quantum computation. Proc. Math. Phys. Eng. Sci. 439(1907), 553–558 (1992)

    MathSciNet  MATH  Google Scholar 

  3. Bennett, C.H., Wiesner, S.J.: Communication via one- and two-particle operators on Einstein–Podolsky–Rosen states. Phys. Rev. Lett. 69, 2881–2884 (1992)

    Article  ADS  MathSciNet  Google Scholar 

  4. Bennett, C.H., Brassard, G., Crépeau, C., Jozsa, R., Peres, A., Wootters, W.K.: Teleporting an unknown quantum state via dual classical and Einstein–Podolsky–Rosen channels. Phys. Rev. Lett. 70, 1895–1899 (1993)

    Article  ADS  MathSciNet  Google Scholar 

  5. Bennett,C., Brassard,G.: Quantum cryptography: public key distribution and coin tossing. Proc. IEEE Int. Conf. on Comp. Sys. Signal Process (ICCSSP), page 175, (1984)

  6. Ekert, Artur K.: Quantum cryptography based on Bell’s theorem. Phys. Rev. Lett. 67, 661–663 (1991)

  7. Namkung, M., Kwon, Y.: Generalized sequential state discrimination for multiparty qkd and its optical implementation. Sci. Rep. 10(1), 1–35 (2020)

    Article  Google Scholar 

  8. Wootters, W.K., Zurek, W.H.: A single quantum cannot be cloned. Nature 299(5886), 802–803 (1982)

    Article  ADS  Google Scholar 

  9. Vazirani, U., Vidick, T.s,: Fully device-independent quantum key distribution. Phys. Rev. Lett. 113, 140501 (2014)

  10. Xiaolong, S.: Applying gaussian quantum discord to quantum key distribution. Chin. Sci. Bull. 59(11), 1083–1090 (2014)

    Article  Google Scholar 

  11. Pirandola, S.: Quantum discord as a resource for quantum cryptography. Sci. Rep. 4, 6956 (2014)

    Article  ADS  Google Scholar 

  12. Troupe, J.E., Farinholt, J.M.: A contextuality based quantum key distribution protocol. arxiv (2015)

  13. Singh, Jaskaran, Bharti, Kishor, Arvind: Quantum key distribution protocol based on contextuality monogamy. Phys. Rev. A 95, 062333 (2017)

  14. Nagata, K.: Kochen–Specker theorem as a precondition for secure quantum key distribution. Phys. Rev. A 72, 012325 (2005)

    Article  ADS  MathSciNet  Google Scholar 

  15. Heywood, P., Redhead, M.L.G.: Nonlocality and the Kochen–Specker paradox. Found. Phys. 13(5), 481–499 (1983)

    Article  ADS  MathSciNet  Google Scholar 

  16. David Mermin, N.: Simple unified form for the major no-hidden-variables theorems. Phys. Rev. Lett. 65, 3373–3376 (1990)

    Article  ADS  MathSciNet  Google Scholar 

  17. Gühne, O., Kleinmann, M., Cabello, A., Larsson, J., Kirchmair, G., Zähringer, F., Gerritsma, R., Roos, C.F.: Compatibility and noncontextuality for sequential measurements. Phys. Rev. A 81, 022121 (2010)

    Article  ADS  Google Scholar 

  18. Abramsky, S., Brandenburger, A.: The sheaf-theoretic structure of non-locality and contextuality. New J. Phys. 13(11), 113036 (2011)

    Article  ADS  Google Scholar 

  19. Beijersbergen, M.W., Coerwinkel, R.P.C., Kristensen, M., Woerdman, J.P.: Helical-wavefront laser beams produced with a spiral phaseplate. Opt. Commun. 112(5–6), 321–327 (1994)

    Article  ADS  Google Scholar 

  20. Heckenberg, N.R., McDuff, R., Smith, C.P., White, A.G.: Generation of optical phase singularities by computer-generated holograms. Opt. Lett. 17(3), 221–223 (1992)

    Article  ADS  Google Scholar 

  21. Mair, A., Vaziri, A., Weihs, G., Zeilinger, A.: Entanglement of the orbital angular momentum states of photons. Nature 412, 313 (2001)

    Article  ADS  Google Scholar 

  22. Leach, J., Padgett, M.J., Barnett, S.M., Franke-Arnold, S., Courtial, J.: Measuring the orbital angular momentum of a single photon. Phys. Rev. Lett. 88(25), 257901 (2002)

    Article  ADS  Google Scholar 

  23. Gregorius, C.G.B., Martin, P.J.L., Johannes, C., Marco, W.B., Miles, J.P.: Efficient sorting of orbital angular momentum states of light. Phys. Rev. Lett. 105(15), 153601 (2010)

    Article  Google Scholar 

  24. Dada, A.C., et al.: Experimental high-dimensional two-photon entanglement and violations of generalized bell inequalities. Nat. Phys. 7, 677 (2011)

    Article  Google Scholar 

  25. Fickler, R., Lapkiewicz, R., Plick, W., Krenn, C., Schaeff, M., Ramelow, S., Zeilinger, A.: Quantum entanglement of high angular momenta. Science 338, 640 (2012)

    Article  ADS  Google Scholar 

  26. Malik, M., Mirhosseini, M., Lavery, M.P.J., Leach, J., Padgett, M.J., Boyd, R.W.: Direct measurement of a 27-dimensional orbital-angular-momentum state vector. Nature Commun. 5(1), 1–7 (2014)

    Article  Google Scholar 

  27. Zhou, Z.-Y., Li, Y., Ding, D.-S., Zhang, W., Shi, S., Shi, B.-S., Guo, G.-C.: Orbital angular momentum photonic quantum interface. Light: Sci. Appl. 5(1), e16019–e16019 (2016)

    Article  Google Scholar 

  28. Yin, J., Cao, Y., Li, Y.-H., Liao, S.-K., Zhang, L., Ren, J.-G., Cai, W.-Q., Liu, W.-Y., Li, B., Dai, H., et al.: Satellite-based entanglement distribution over 1200 kilometers. Science 356(6343), 1140–1144 (2017)

    Article  Google Scholar 

  29. Erhard, M., Fickler, R., Krenn, M., Zeilinger, A.: Twisted photons: new quantum perspectives in high dimensions. Light: Sci. Appl. 7(3), 17146 (2018)

    Article  Google Scholar 

  30. Clauser, J.F., Horne, M.A., Shimony, A., Holt, R.A.: Proposed experiment to test local hidden-variable theories. Phys. Rev. Lett. 23(15), 880 (1969)

    Article  ADS  Google Scholar 

  31. Brunner, N., Cavalcanti, D., Pironio, S., Scarani, V., Wehner, S.: Bell nonlocality. Rev. Mod. Phys. 86, 419–478 (2014)

    Article  ADS  Google Scholar 

  32. Jo, Y., Son, W.: Semi-device-independent multiparty quantum key distribution in the asymptotic limit. OSA Continuum 2(3), 814–826 (2019)

    Article  Google Scholar 

  33. Allen, L., Beijersbergen, M.W., Spreeuw, R.J.C., Woerdman, J.P.: Orbital angular momentum of light and the transformation of laguerre-gaussian laser modes. Phys. Rev. A 45, 8185–8189 (1992)

    Article  ADS  Google Scholar 

  34. Allen, L., Padgett, M.: Chapter 1–introduction to phase-structured electromagnetic waves. In: David, L., Andrews, W.S. (eds.) Structured Light and Its Applications, pp. 1–17. Academic Press, Burlington (2008)

    Google Scholar 

  35. O’Neil, A.T., Courtial, J.: Mode transformations in terms of the constituent Hermite-Gaussian or Laguerre-Gaussian modes and the variable-phase mode converter. Opt. Commun. 181(1–3), 35–45 (2000)

  36. Mirhosseini, M., Malik, M., Shi, Z., Boyd, R.W.: Efficient separation of the orbital angular momentum eigenstates of light. Nature Commun. 4(1), 1–6 (2013)

    Article  Google Scholar 

  37. Vaziri, A., Weihs, G., Zeilinger, A.: Superpositions of the orbital angular momentum for applications in quantum experiments. J. Opt. B: Quantum Semiclass. Opt. 4(2), S47 (2002)

    Article  ADS  Google Scholar 

  38. Sroor, H., Huang, Y.-W., Sephton, B., Naidoo, D., Vallés, A., Ginis, V., Qiu, C.-W.: Antonio Ambrosio, Federico Capasso, and Andrew Forbes. High-purity orbital angular momentum states from a visible metasurface laser. Nature Photon. (2020)

  39. Proietti, M., Ho, J., Grasselli, F., Barrow, P., Malik, M., Fedrizzi, A.: Experimental quantum conference key agreement. Sci. Adv. 7(23):eabe0395, eabe0395 (2021)

    Article  Google Scholar 

  40. Leach, J., Courtial, J., Skeldon, K., Barnett, S.M., Franke-Arnold, S., Padgett, M.J.: Interferometric methods to measure orbital and spin, or the total angular momentum of a single photon. Phys. Rev. Lett. 92(1), 013601 (2004)

    Article  ADS  Google Scholar 

  41. Wang, Y., Potoček, V., Barnett, S.M.: Feng, X: Programmable holographic technique for implementing unitary and nonunitary transformations. Phys. Rev. A 95, 033827 (2017)

    Article  ADS  Google Scholar 

  42. Scarani, V., Bechmann-Pasquinucci, H., Cerf, N.J., Dušek, M., Lütkenhaus, N., Peev, M.: The security of practical quantum key distribution. Rev. Mod. Phys. 81(3), 1301 (2009)

    Article  ADS  Google Scholar 

  43. Mermin, N.D.: Extreme quantum entanglement in a superposition of macroscopically distinct states. Phys. Rev. Lett. 65, 1838–1840 (1990)

    Article  ADS  MathSciNet  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the anonymous reviewers for their valuable comments that help enhancing the quality of the paper. Rajni thanks UGC for funding her research. Sooryansh thanks the Council for Scientific and Industrial Research (Grant no. -09/086 (1278)/2017-EMR-I) for funding his research.

Author information

Authors and Affiliations

Authors

Contributions

All the authors contributed equally in all respects.

Corresponding author

Correspondence to Rajni Bala.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

A Mermin’s nonlocality inequality as contextuality inequality

The interrelation between the two-party nonlocality and single-qudit contextuality, shown in Sect. 3.1 for CHSH inequality, continues to hold even for multi-party nonlocality inequalities. We illustrate it through the example of Mermin’s inequality. For that, we briefly recapitulate Mermin’s inequality for an N-party system.

Mermin’s inequality distinguishes the states admitting completely factorisable local hidden variable model from nonlocal states.

Consider a pair of dichotomic observables \(\{A_{j}, A'_{j} \}\) in the space of the \(j^\mathrm{th}\) party (\( j\in \{1, \cdots , N\}\)). The inequality is as follows [43]:

$$\begin{aligned} {{\mathcal {M}}}_N&=\frac{1}{2i}\Bigg \vert \bigg \langle \prod _{j=1}^{N} (A_j+i A'_j)-\prod _{j=1}^{N}(A_j-i A'_j)\bigg \rangle \Bigg \vert \le c\nonumber \\ c&= 2^{N/2},\quad N=\mathrm{even},\nonumber \\&= 2^{\frac{N-1}{2}},\quad N= \mathrm{odd}; N \ge 3. \end{aligned}$$
(39)

The observables corresponding to different parties commute and \([A_k,A'_k] \ne 0\).

For the special case of an N qubit system, inequality (39) gets maximally violated by the GHZ state,

$$\begin{aligned} |\phi _N\rangle =\dfrac{1}{\sqrt{2}}\bigg (|0\rangle ^{\otimes N}+i|1\rangle ^{\otimes N}\bigg ), \end{aligned}$$
(40)

for the following choice of the observables:

$$\begin{aligned} A_k =X_k;~A'_k=Y_k. \end{aligned}$$
(41)

It is pertinent to illustrate the contextual behaviour of \(|\phi _N\rangle \) to substantiate our claim. For that purpose, we consider the following two contexts: Context 1 (\(Z_1 Z_2\cdots Z_{N-1}Z_N \)): Suppose the outcome of \(Z_1\) is \(+1(-1)\). Then, the outcomes of observables \(Z_2, Z_3, \cdots , Z_N\) will be \(+1(-1)\) with unit probability. Context 2 (\(Y_1Z_2\cdots Z_N\)): Let the outcome of the measurement of \(Y_1\) be once again, +1. Following it, the measurement of observable \(Z_2\) will yield \(+1\) or \(-1\) with equal probability. Thereafter, the measurement of \(Z_3, \cdots , Z_N\) will definitely yield +1. Thus, the outcome of \(Z_2\) depends on the set of commuting observables it is measured with, i.e. it depends on the context. Exactly in the same manner as in Sect. 3.1, the observables and the state in the \(2^N\) dimensional Hilbert space can be identified.

$$\begin{aligned} |\phi _N\rangle \mapsto |\Phi \rangle =\dfrac{1}{\sqrt{2}}(|0\rangle +i |2^N-1\rangle ) \end{aligned}$$
(42)

The equivalent observables \(\{{\mathbb {Z}}_1,\cdots , {\mathbb {Z}}_N,{\mathbb {Y}}_1 \}\) can be obtained by following the prescription in point (2) and (3) of Sect. 2, and they satisfy the same commutation relations as \(\{{Z}_1,\cdots , {Z}_N, {Y}_1 \}\) because of operator isomorphism. Thus, Mermin’s inequality probes contextuality in a qudit of appropriate higher dimension and can be referred to as Mermin’s contextuality inequality.

B Illustration of eavesdropping

To illustrate the point that how Eve obtains information about the key without disturbing the violation of contextuality inequality, we consider the QCP based on Mermin’s contextuality inequality. Consider an example of three parties, Bob\(_1\), Bob\(_2\) and Bob\(_3\). We choose following set of observables:

$$\begin{aligned}&{\mathbb {Z}}_1=|0\rangle \langle 0|+|1\rangle \langle 1|+|2\rangle \langle 2|+|3\rangle \langle 3|\nonumber \\&~~~~~-\Big (|4\rangle \langle 4|+|5\rangle \langle 5|+|6\rangle \langle 6|+|7\rangle \langle 7|\Big )\nonumber \\&{\mathbb {Z}}_2=|0\rangle \langle 0|+|1\rangle \langle 1|+|4\rangle \langle 4|+|5\rangle \langle 5|\nonumber \\&~~~~~-\Big (|2\rangle \langle 2|+|3\rangle \langle 3|+|6\rangle \langle 6|+|7\rangle \langle 7|\Big )\nonumber \\&{\mathbb {Z}}_3=|0\rangle \langle 0|+|2\rangle \langle 2|+|4\rangle \langle 4|+|6\rangle \langle 6|\nonumber \\&~~~~~~-\Big (|1\rangle \langle 1|+|3\rangle \langle 3|+|5\rangle \langle 5|+|7\rangle \langle 7|\Big )\nonumber \\&{\mathbb {X}}_1=|0^+\rangle \langle 0^+|+|1^+\rangle \langle 1^+|+|2^+\rangle \langle 2^+|+|3^+\rangle \langle 3^+|\nonumber \\&~~~~~-\Big (|0^-\rangle \langle 0^-|+|1^-\rangle \langle 1^-|+|2^-\rangle \langle 2^-|+|3^-\rangle \langle 3^-|\Big ), \end{aligned}$$
(43)

where the symbols \(|l^{\pm }\rangle \) are defined as,

$$\begin{aligned} |l^\pm \rangle =\frac{1}{\sqrt{2}}(|l\rangle \pm |l+4\rangle );~~~ l \in \{0, 1, 2, 3\}. \end{aligned}$$
(44)

Consider the following two situations, one in which there is no eavesdropping, the other in which Eve is present.

  1. 1.

    Case I: Following the steps of Mermin’s contextuality-based QCP, let Bob\(_1\) prepares a state \(|\Psi _M'\rangle =|0\rangle \) for the +1 outcome of \({\mathbb {Z}}_1\) on the reference state \(|\Psi _M\rangle \). He sends this state \(|\Psi _M'\rangle \) to Bob\(_2\). If Bob\(_2\) measures, say, \({\mathbb {Z}}_2\) on this state, he obtains the outcome +1 with unit probability. Thereafter, he sends the post-measurement state to Bob\(_3\). Bob\(_3\) measures, say, \({\mathbb {Z}}_3\), he is bound to get outcome +1 with unit probability.

  2. 2.

    Case II: Let there be an eavesdropping between Bob\(_2\) and Bob\(_3\). Eve measures an observable, \(\mathbb {X_1}\). She obtains \(\pm 1\) with equal probability and the state collapses to \(|\Phi ^{\pm }\rangle =\frac{1}{\sqrt{2}}(|0\rangle \pm |4\rangle )\). She sends the post-measurement state to Bob\(_3\). Bob\(_3\) measures an observable \({\mathbb {Z}}_3\), as in the previous case, and obtains outcome +1 with unit probability. Thus, the measurement of Eve does not affect the outcome of Bob\(_3\)’s measurement. Due to this, Bob\(_3\) will never detect presence of Eve. In this way, Eve can obtain full information about the key by choosing appropriate observable without being detected.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bala, R., Asthana, S. & Ravishankar, V. Contextuality-based quantum conferencing. Quantum Inf Process 20, 352 (2021). https://doi.org/10.1007/s11128-021-03286-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11128-021-03286-8

Keywords

Navigation