Skip to main content
Log in

Schemes for fusing photonic W-state simultaneously without qubit loss via weak cross-Kerr nonlinearities

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

We propose three schemes to generate polarization W-states of size \(n+m\), \(n+m+t\), and \(n+m+t+z\) without qubit loss, i.e., large-sized \(W_{n+m}\) (\(W_{n+m+t}\) and \(W_{n+m+t+z}\)) is generated from one \(W_n\) and one \(W_m\) (one \(W_n\), one \(W_m\), and one \(W_t\), and one \(W_n\), one \(W_m\), one \(W_t\), and one \(W_z\)). The qubit-loss-free fusion mechanism increases the size of the fusion W states essentially, i.e., reduces the fusion steps, which makes the implementations of the schemes possible within current technology. Ancillary photons, controlled-NOT, Toffoli, Fredkin, and partial-SWAP gates are not required in our schemes. In addition, the number of the coherence states is reduced from 3 to 2, and path couplers are not employed. There is no complete failure output, and all garbage states are recyclable in the \(W_{n+m}\) fusion scheme.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Nielsen, M.A., Chuang, I.L.: Quantum computation and quantum information. Cambridge, Cambridge, UK (2000)

    MATH  Google Scholar 

  2. Ekert, A.K.: Quantum cryptography based on Bell’s theorem. Phys. Rev. Lett. 67(6), 661–667 (1991)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  3. Lim, Y.L., Beige, A., Kwek, L.C.: Repeat-until-success linear optics distributed quantum computing. Phys. Rev. Lett. 95(3), 030505 (2005)

    Article  ADS  Google Scholar 

  4. Shahandeh, F., Lund, A.P., Ralph, T.C.: Quantum correlations and global coherence in distributed quantum computing. Phys. Rev. A 99(5), 052303 (2019)

    Article  ADS  Google Scholar 

  5. Bennett, C.H., Brassard, G., Crepeau, C., Jozsa, R., Peres, A., Wootters, W.K.: Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels. Phys. Rev. Lett. 70(13), 1895–1899 (1993)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  6. Ren, J.G., Xu, P., Yong, H.L., Zhang, L., Liao, S.K., Yin, J., Liu, W.Y., Cai, W.Q., Yang, M., Li, L., Yang, K.X., Han, X., Yao, Y.Q., Li, J., Wu, H.Y., Wan, S., Liu, L., Liu, D.Q., Kuang, Y.W., He, Z.P., Shang, P., Guo, C., Zheng, R.H., Tian, K., Zhu, Z.C., Liu, N.L., Lu, C.Y., Shu, R., Chen, Y.A., Peng, C.Z., Wang, J.Y., Pan, J.W.: Ground-to-satellite quantum teleportation. Nature 549(7670), 70–73 (2017)

    Article  ADS  Google Scholar 

  7. Lee, S.M., Lee, S.W., Jeong, H., Park, H.S.: Quantum teleportation of shared quantum secret. Phys. Rev. Lett. 124(6), 060501 (2020)

    Article  ADS  MathSciNet  Google Scholar 

  8. de Oliveira, M., Nape, I., Pinnell, J., TabeBordbar, N., Forbes, A.: Experimental high-dimensional quantum secret sharing with spin-orbit-structured photons. Phys. Rev. A 101(4), 042303 (2020)

    Article  ADS  Google Scholar 

  9. Long, G.L., Liu, X.S.: Theoretically efficient high-capacity quantum-key-distribution scheme. Phys. Rev. A 65(3), 032302 (2002)

    Article  ADS  Google Scholar 

  10. Li, T., Long, G.L.: Quantum secure direct communication based on single-photon Bell-state measurement. New J. Phys. 22(6), 063017 (2020)

    Article  ADS  MathSciNet  Google Scholar 

  11. Brunner, N., Cavalcanti, D., Pironio, S., Scarani, V., Wehner, S.: Bell nonlocality. Rev. Mod. Phys. 86(2), 419 (2014)

    Article  ADS  Google Scholar 

  12. Giovannetti, V., Lloyd, S., Maccone, L.: Quantum metrology. Phys. Rev. Lett. 96(1), 010401 (2006)

    Article  ADS  MathSciNet  Google Scholar 

  13. Dür, W., Vidal, G., Cirac, J.I.: Three qubits can be entangled in two inequivalent ways. Phys. Rev. A 62(6), 062314 (2000)

    Article  ADS  MathSciNet  Google Scholar 

  14. Argrawal, P., Pati, A.: Perfect teleportation and superdense coding with W states. Phys. Rev. A 74(6), 062360 (2006)

    ADS  Google Scholar 

  15. Zhu, C., Xu, F., Pei, C.: W-state analyzer and multi-party measurement-device-independent quantum key distribution. Sci. Rep. 5(1), 17449 (2015)

    Article  ADS  Google Scholar 

  16. Murao, M., Jonathan, D., Plenio, M.B., Vedral, V.: Quantum telecloning and multiparticle entanglement. Phys. Rev. A 59(1), 156–161 (1999)

    Article  ADS  Google Scholar 

  17. D’Hondt, E., Panangaden, P.: The computational power of the W and GHZ states. Quantum Inf. Comput. 6(2), 173–183 (2006)

  18. Lipinska, V., Murta, G., Wehner, S.: Anonymous transmission in a noisy quantum network using the W state. Phys. Rev. A 98(5), 052320 (2018)

    Article  ADS  Google Scholar 

  19. Fraisse, J.M.E., Braun, D.: Quantum channel-estimation with particle loss: GHZ versus W states. Quantum Meas. Quantum Metrol. 3(1), 53–67 (2016)

  20. Mikami, H., Li, Y., Fukuoka, K., Kobayashi, T.: New high-efficiency source of a three-photon W state and its full characterization using quantum state tomography. Phys. Rev. Lett. 95(15), 150404 (2005)

    Article  ADS  Google Scholar 

  21. Eibl, M., Kiesel, N., Bourennane, M., Kurtsiefer, C., Weinfurter, H.: Experimental realization of a three-qubit entangled state. Phys. Rev. Lett. 92(7), 077901 (2004)

    Article  ADS  Google Scholar 

  22. Yesilyurt, C., Bugu, S., Diker, F., Altintas, A.A., Ozaydin, F.: An optical setup for deterministic creation of four partite W state. Acta Phys. Pol., A 127(4), 1230–1232 (2015)

    Article  ADS  Google Scholar 

  23. Yesilyurt, C., Bugu, S., Ozaydin, F., Altintas, A.A., Tame, M., Yang, L., Özdemir, ŞK.: Deterministic local doubling of W states. J. Opt. Soc. Am. B 33(11), 2313–2319 (2016)

    Article  ADS  Google Scholar 

  24. Zang, X.P., Yang, M., Ozaydin, F., Song, W., Cao, Z.L.: Deterministic generation of large scale atomic W states. Opt. Express 24(11), 12293–12300 (2016)

    Article  ADS  Google Scholar 

  25. Çakmak, B., Campbell, S., Vacchini, B., Müstecaplıoğlu, Ö.E., Paternostro, M.: Robust multipartite entanglement generation via a collision mode. Phys. Rev. A 99(1), 012319 (2019)

    Article  ADS  Google Scholar 

  26. Sharma, A., Tulapurkar, A.A.: Generation of n-qubit W states using spin torque. Phys. Rev. A 101(6), 062330 (2020)

    Article  ADS  Google Scholar 

  27. Kim, Y.S., Cho, Y.W., Lim, H.T., Han, S.W.: Efficient linear optical generation of a multipartite W state via a quantum eraser. Phys. Rev. A 101(2), 022337 (2020)

    Article  ADS  Google Scholar 

  28. Ozaydin, F., Yesilyurt, C., Bugu, S., Koashi, M.: Deterministic preparation of W states via spin-photon interactions. Phys. Rev. A 103(5), 052421 (2021)

    Article  ADS  MathSciNet  Google Scholar 

  29. Xu, W., Zhao, X., Long, G.L.: Efficient generation of multi-photon W states by joint-measurement. Prog. Nat. Sci. 18(1), 119–122 (2008)

    Article  MathSciNet  Google Scholar 

  30. Tashima, T., Özdemir, ŞK., Yamamoto, T., Koashi, M., Imoto, N.: Elementary optical gate for expanding an entanglement web. Phys. Rev. A 77(3), 030302(R) (2008)

    Article  ADS  MATH  Google Scholar 

  31. Tashima, T., Kitano, T., Özdemir, ŞK., Yamamoto, T., Koashi, M., Imoto, N.: Demonstration of local expansion toward large-scale entangled webs. Phys. Rev. Lett. 105(21), 210503 (2010)

    Article  ADS  Google Scholar 

  32. Tashima, T., Özdemir, ŞK., Yamamoto, T., Koashi, M., Imoto, N.: Local expansion of photonic W state using a polarization-dependent beamsplitter. New J. Phys. 11(2), 023024 (2009)

    Article  ADS  Google Scholar 

  33. Gong, Y.X., Zou, X.B., Huang, Y.F., Guo, G.C.: Simple scheme for expanding a polarization-entangled W state by adding one photon. J. Phys. B: At. Mol. Opt. Phys. 42(3), 035503 (2013)

    Article  ADS  Google Scholar 

  34. Hu, J.R., Lin, Q.: W state generation by adding independent single photons. Quantum Inf. Process. 14(8), 2847–2860 (2015)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  35. Ikuta, R., Tashima, T., Yamamoto, T., Koashi, M., Imoto, N.: Optimal local expansion of W states using linear optics and Fock states. Phys. Rev. A 83(1), 012304 (2011)

    Article  ADS  Google Scholar 

  36. Özdemir, ŞK., Matsunaga, E., Tashima, T., Yamamoto, T., Koashi, M., Imoto, N.: An optical fusion gate for W-states. New J. Phys. 13(10), 103003 (2011)

    Article  ADS  Google Scholar 

  37. Bugu, S., Yesilyurt, C., Ozaydin, F.: Enhancing the W-state quantum-network-fusion process with a single Fredkin gate. Phys. Rev. A 87(3), 032331 (2013)

    Article  ADS  Google Scholar 

  38. Yesilyurt, C., Bugu, S., Ozaydin, F.: An optical gate for simultaneous fusion of four photonic W or Bell states. Quantum Inf. Process. 12(9), 2965–2975 (2013)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  39. Ozaydin, F., Bugu, S., Yesilyurt, C., Altintas, A.A., Tame, M., Özdemir, ŞK.: Fusing multiple W states simultaneously with a Fredkin gate. Phys. Rev. A 89(4), 042311 (2014)

    Article  ADS  Google Scholar 

  40. Han, X., Hu, S., Guo, Q., Wang, H.F., Zhu, A.D., Zhang, S.: Effective W-state fusion strategies for electronic and photonic qubits via the quantum-dot-microcavity coupled system. Sci. Rep. 5(1), 12790 (2015)

    Article  ADS  Google Scholar 

  41. Li, K., Kong, F.Z., Yang, M., Yang, Q., Cao, Z.L.: Qubit-loss-free fusion of W states. Phys. Rev. A 94(6), 062315 (2016)

    Article  ADS  Google Scholar 

  42. Wang, M., Hao, Q., Yan, F.L., Gao, T.: Qubit-loss-free fusion of W states employing weak cross-Kerr nonlinearities. Quantum Inf. Comput. 18(1 & 2), 0075–0084 (2018)

    MathSciNet  Google Scholar 

  43. Ding, C.Y., Kong, F.Z., Yang, Q., Yang, M., Cao, Z.L.: Qubit-loss-free fusion of atomic W states via photonic detection. Quantum Inf. Process. 17(6), 124 (2018)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  44. Li, K., Chen, T., Hong, X., Mao, H., Wang, J.: Qubit-loss-free fusion of W states in cavity quantum electrodynamics system. Quantum Inf. Process. 18(9), 273 (2019)

    Article  ADS  MathSciNet  Google Scholar 

  45. Zang, X.P., Yang, M., Song, W., Cao, Z.L.: Fusion of entangled coherent W and GHZ states in cavity QED. Opt. Commun. 370, 168–171 (2016)

    Article  ADS  Google Scholar 

  46. Li, K., Kong, F.Z., Yang, M., Ozaydin, F., Yang, Q., Cao, Z.L.: Generating multi-photon W-like states for perfect quantum teleportation and superdense coding. Quantum Inf. Process. 15(8), 3137–3150 (2016)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  47. Bugu, S., Ozaydin, F., Ferrus, T., Kodera, T.: Preparing multipartite entangled spin qubits via pauli spin blockade. Sci. Rep. 10(1), 3481 (2020)

    Article  ADS  Google Scholar 

  48. Wei, H.R., Liu, W.Q., Kwek, L.C.: Efficient fusion of photonic W-states with nonunitary partial-swap gates. New J. Phys. 22(9), 093501 (2020)

    Article  Google Scholar 

  49. Li, K., Zheng, D.L., Xu, W.Q., Mao, H.B., Wang, J.Q.: W states fusion via polarization-dependent beam splitter. Quantum Inf. Process. 19(11), 412 (2020)

    Article  ADS  Google Scholar 

  50. Han, X., Hu, S., Guo, Q., Wang, H.F., Zhang, S.: Effective scheme for W-state fusion with weak cross-Kerr nonlinearities. Quantum Inf. Process. 14(6), 1919–1932 (2015)

    Article  ADS  MATH  Google Scholar 

  51. Barrett, S.D., Kok, P., Nemoto, K., Beausoleil, R.G., Munro, W.J., Spiller, T.P.: Symmetry analyzer for nondestructive Bell-state detection using weak nonlinearities. Phys. Rev. A 71(6), 060302(R) (2005)

    Article  ADS  Google Scholar 

  52. Nemoto, K., Munro, W.J.: Nearly deterministic linear optical controlled-NOT gate. Phys. Rev. Lett. 93(25), 250502 (2004)

    Article  ADS  Google Scholar 

  53. Shende, V.V., Markov, I.L.: On the CNOT-cost of Toffoli gates. Quantum Inf. Comput. 9(5–6), 461–486 (2009)

    MathSciNet  MATH  Google Scholar 

  54. Lanyon, B.P., Barbieri, M., Almeida, M.P., Jennewein, T., Ralph, T.C., Resch, K.J., Pryde, G.J., O’ Brien, J. L., Gilchrist, A., White, A.G. : Simplifying quantum logic using higher-dimensional Hilbert spaces. Nat. Phys. 5(2), 134–140 (2009)

  55. Liu, W.Q., Wei, H.R.: Optimal synthesis of the Fredkin gate in a multilevel system. New J. Phys. 22(6), 063026 (2020)

    Article  ADS  MathSciNet  Google Scholar 

  56. Liu, W.Q., Wei, H.R., Kwek, L.C.: Low-cost Fredkin gate using auxiliary space. Phys. Rev. Applied 14(5), 054057 (2020)

    Article  ADS  Google Scholar 

  57. Reiserer, A., Kalb, N., Rempe, G., Ritter, S.: A quantum gate between a flying optical photon and a single trapped atom. Nature 508(7495), 237–240 (2014)

    Article  ADS  Google Scholar 

  58. Hacker, B., Welte, S., Rempe, G., Ritter, S.: A photon-photon quantum gate based on a single atom in an optical resonator. Nature 536(7615), 193–196 (2016)

    Article  ADS  Google Scholar 

  59. Kalb, N., Reiserer, A., Ritter, S., Rempe, G.: Heralded storage of a photonic quantum bit in a single atom. Phys. Rev. Lett. 114(22), 220501 (2015)

    Article  ADS  Google Scholar 

  60. Blinov, B.B., Moehring, D.L., Duan, L.M., Monroe, C.: Observation of entanglement between a single trapped atom and a single photon. Nature 428(6979), 153–157 (2004)

    Article  ADS  Google Scholar 

  61. Bao, X.H., Chen, T.Y., Zhang, Q., Yang, J., Zhang, H., Yang, T., Pan, J.W.: Optical nondestructive controlled-NOT gate without using entangled photons. Phys. Rev. Lett. 98(17), 170502 (2007)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work is supported by the Fundamental Research Funds for the Central Universities under Grants No. FRF-TP-19-011A3, the National Natural Science Foundation of China under Grants Nos. 11604012, 61901420 and 12004281, and a grant from the China Scholarship Council.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hai-Rui Wei.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zheng, YB., Zhou, XJ., Wei, HR. et al. Schemes for fusing photonic W-state simultaneously without qubit loss via weak cross-Kerr nonlinearities. Quantum Inf Process 20, 273 (2021). https://doi.org/10.1007/s11128-021-03210-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11128-021-03210-0

Keywords

Navigation