Skip to main content
Log in

Multipartite coherence and monogamy relationship under the Unruh effect in an open system

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

Quantum coherence and monogamy relationship for tripartite GHZ and W states, under the influence of local amplitude-damping environments and for two accelerated observers, are studied. It is shown that environmental noise has stronger influence on quantum coherence than Unruh effect. Quantum coherence of GHZ state is symmetric with respect to all observers, which vanishes when any one of the subsystems encounters infinite dissipation, while quantum coherence of W state is asymmetric with respect to observers, which vanishes only when more than two subsystems encounter infinite dissipations. In addition, the coherence of GHZ state is completely global and there is no coherence between any bipartite subsystems, but the coherence of W state is distributed, which equals the sum of coherences between all bipartite subsystems. We also extend the investigation to the N-partite systems. We find that the coherence is a decreasing function of N for N-partite GHZ state, but an increasing function of N for N-partite W state. Similar monogamy relationships for N-partite systems are also established.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Leggett, A.J.: Macroscopic quantum systems and the quantum theory of measurement. Prog. Theor. Phys. Suppl. 69, 80–100 (1980)

    Article  ADS  MathSciNet  Google Scholar 

  2. Schumacher, B., Westmoreland, M.D.: Quantum privacy and quantum coherence. Phys. Rev. Lett. 80, 5695–5697 (1998)

    Article  ADS  Google Scholar 

  3. Barnes, S.E., Ballou, R., Barbara, B., Strelen, J.: Quantum coherence in small antiferromagnets. Phys. Rev. Lett. 79, 289–292 (1997)

    Article  ADS  Google Scholar 

  4. Streltsov, A., Adesso, G., Plenio, M.B.: Quantum coherence as a resource. Rev. Mod. Phys. 89(1–34), 041003 (2017)

    Article  ADS  MathSciNet  Google Scholar 

  5. Sharma, U.K., Chakrabarty, I., Shukla, M.K.: Broadcasting quantum coherence via cloning. Phys. Rev. A 96(1–9), 052319 (2017)

    Article  Google Scholar 

  6. Peng, Y., Jiang, Y., Fan, H.: Maximally coherent states and coherence-preserving operations. Phys. Rev. A 93(1–6), 032326 (2016)

    Article  ADS  Google Scholar 

  7. Brandão, F.G.S.L., Horodecki, M., Ng, N.H.Y., Oppenheim, J., Wehner, S.: The second laws of quantum thermodynamics. Proc. Natl. Acad. Sci. U. S. A. 112, 3275–3279 (2015)

    Article  ADS  Google Scholar 

  8. Horodecki, M., Oppenheim, J.: Fundamental limitations for quantum and nanoscale thermodynamics. Nat. Commun. 4(1–6), 2059 (2013)

    Article  ADS  Google Scholar 

  9. Ćwikliński, P., Studziński, M., Horodecki, M., Oppenheim, J.: Limitations on the evolution of quantum coherences: towards fully quantum second laws of thermodynamics. Phys. Rev. Lett. 115(1–5), 210403 (2015)

    Article  ADS  Google Scholar 

  10. Huelga, S.F., Plenio, M.B.: A vibrant environment. Nat. Phys. 10, 621–622 (2014)

    Article  Google Scholar 

  11. Huelga, S.F., Plenio, M.B.: Vibrations, quanta and biology. Contemp. Phys. 54, 181–207 (2013)

    Article  ADS  Google Scholar 

  12. Gärttner, M., Hauke, P., Rey, A.M.: Relating out-of-time-order correlations to entanglement via multiple-quantum coherences. Phys. Rev. Lett. 120(1–6), 040402 (2018)

    Article  ADS  MathSciNet  Google Scholar 

  13. Zeng, H.S., Ren, Y.K., Wang, X.L., He, Z.: Non-Markovian dynamics and quantum interference in open three-level quantum systems. Quantum Inf. Process. 18(1–23), 378 (2019)

    Article  ADS  MathSciNet  Google Scholar 

  14. Wu, S.M., Zeng, H.S.: Multipartite quantum coherence and monogamy for Dirac fields subject to Hawking radiation. Quantum Inf. Process 18(1–12), 305 (2019)

    Article  ADS  MathSciNet  Google Scholar 

  15. Wang, J., Tian, Z., Jing, J., Fan, H.: Irreversible degradation of quantum coherence under relativistic motion. Phys. Rev. A 93(1–6), 062105 (2016)

    Article  ADS  Google Scholar 

  16. de Buruaga, D.N.S.S., Sabín, C.: Quantum coherence in the dynamical Casimir effect. Phys. Rev. A 95(1–7), 022307 (2017)

    Article  ADS  Google Scholar 

  17. Liu, X., Tian, Z., Wang, J., Jing, J.: Inhibiting decoherence of two-level atom in thermal bath by presence of boundaries. Quantum Inf. Process. 15, 3677–3694 (2016)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  18. Liu, T.H., Cao, S., Wu, S.M., Zeng, H.S.: The influence of the Earths curved spacetime on Gaussian quantum coherence. Laser Phys. Lett. 16(1–7), 095201 (2019)

    Article  ADS  Google Scholar 

  19. Wu, S.M., Zeng, H.S., Liu, T.H.: Quantum coherence of Gaussian states in curved spacetime. Results Phys. 14(1–6), 102398 (2019)

    Article  Google Scholar 

  20. Huang, Z.: Dynamics of quantum correlation and coherence in de Sitter universe. Quantum Inf. Process. 16(1–12), 207 (2017)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  21. Huang, Z., Situ, H.: Quantum coherence behaviors of fermionic systems in non-inertial frame. Quantum Inf. Process. 17(1–18), 95 (2018)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  22. Ding, Z.Y., Liu, C.C., Sun, W.Y., He, J., Ye, L.: Quantum coherence of fermionic systems in noninertial frames beyond the single-mode approximation. Quantum Inf. Process. 17(1–17), 279 (2018)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  23. Wang, J., Jing, J.: Multipartite entanglement of fermionic systems in noninertial frames. Phys. Rev. A 83(1–5), 022314 (2011)

    Article  ADS  Google Scholar 

  24. Xu, S., Song, X.K., Shi, J.D., Ye, L.: How the Hawking effect affects multipartite entanglement of Dirac particles in the background of a Schwarzschild black hole. Phys. Rev. D 89(1–7), 065022 (2014)

    Article  ADS  Google Scholar 

  25. Hwang, M.R., Park, D., Jung, E.: Tripartite entanglement in a noninertial frame. Phys. Rev. A 83(1–8), 012111 (2011)

    Article  ADS  Google Scholar 

  26. Dai, Y., Shen, Z., Shi, Y.: Quantum entanglement in three accelerating qubits coupled to scalar fields. Phys. Rev. D 94(1–17), 025012 (2016)

    Article  ADS  MathSciNet  Google Scholar 

  27. Qiang, W.C., Sun, G.H., Dong, Q., Dong, S.H.: Genuine multipartite concurrence for entanglement of Dirac fields in noninertial frames. Phys. Rev. A 98(1–7), 022320 (2018)

    Article  ADS  Google Scholar 

  28. Torres-Arenas, A.J., Dong, Q., Sun, G.H., Qiang, W.C., Dong, S.H.: Entanglement measures of W-state in noninertial frames. Phys. Lett. B 789, 93–105 (2019)

    Article  ADS  Google Scholar 

  29. Zhang, W., Jing, J.: Multipartite entanglement for open system in noninertial frames (2011). arXiv:1103.4903

  30. Khan, S.: Entanglement of tripartite states with decoherence in noninertial frames. J. Mod. Opt. 59, 250–258 (2012)

    Article  ADS  MATH  Google Scholar 

  31. Dër, W., Vidal, G., Cirac, J.I.: Three qubits can be entangled in two inequivalent ways. Phys. Rev. A 62(1–12), 062314 (2000)

    Article  ADS  MathSciNet  Google Scholar 

  32. Baumgratz, T., Cramer, M., Plenio, M.B.: Quantifying coherence. Phys. Rev. Lett. 113(1–4), 140401 (2014)

    Article  ADS  Google Scholar 

  33. Streltsov, A., Singh, U., Dhar, H.S., Bera, M.N., Adesso, G.: Measuring quantum coherence with entanglement. Phys. Rev. Lett. 115, 020403 (2015)

    Article  ADS  MathSciNet  Google Scholar 

  34. Yuan, X., Zhou, H., Cao, Z., Ma, X.: Intrinsic randomness as a measure of quantum coherence. Phys. Rev. A 92, 022124 (2015)

    Article  ADS  Google Scholar 

  35. Qi, X., Gao, T., Yan, F.: Measuring coherence with entanglement concurrence. J. Phys. A: Math. Theor. 50, 285301 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  36. Rana, S., Parashar, P., Lewenstein, M.: Trace-distance measure of coherence. Phys. Rev. A 93, 012110 (2016)

    Article  ADS  MathSciNet  Google Scholar 

  37. Shao, L.H., Xi, Z., Fan, H., Li, Y.: Fidelity and trace-norm distances for quantifying coherence. Phys. Rev. A 91, 042120 (2015)

    Article  ADS  Google Scholar 

  38. Zeng, H.S., Liao, M.J.: Quantum beat of coherence induced by non-Markovian effect. Eur. Phys. J. D 74(1–5), 109 (2020)

    Article  ADS  Google Scholar 

  39. Alsing, P.M., Fuentes-Schuller, I., Mann, R.B., Tessier, T.E.: Entanglement of Dirac fields in noninertial frames. Phys. Rev. A 74(1–15), 032326 (2006)

    Article  ADS  Google Scholar 

  40. Wang, J., Jing, J., Fan, H.: Quantum discord and measurement-induced disturbance in the background of dilation black holes. Phys. Rev. D 90(1–6), 025032 (2014)

    Article  ADS  Google Scholar 

  41. Salles, A., de Melo, F., Almeida, M.P., Hor-Meyll, M., Walborn, S.P., SoutoRibeiro, P.H., Davidovich, L.: Experimental investigation of the dynamics of entanglement: Sudden death, complementarity, and continuous monitoring of the environment. Phys. Rev. A 78(1–15), 022322 (2008)

    Article  ADS  Google Scholar 

  42. Wang, J., Jing, J.: Quantum decoherence in noninertial frames. Phys. Rev. A 82(1–4), 032324 (2011)

    ADS  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Grant Nos. 11275064, 11775075, 11434011) and the Construct Program of the National Key Discipline.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shu-Min Wu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, SM., Li, ZC. & Zeng, HS. Multipartite coherence and monogamy relationship under the Unruh effect in an open system. Quantum Inf Process 20, 277 (2021). https://doi.org/10.1007/s11128-021-03209-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11128-021-03209-7

Keywords

Navigation