Skip to main content
Log in

Non-Markovian dynamics and quantum interference in open three-level quantum systems

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

The exact analytical solutions for the dynamics of the dissipative three-level V-type and \(\varLambda \)-type atomic systems in the vacuum Lorentzian environments are presented. Quantum interference between the spontaneous emissions of different decaying channels for the V-type atomic system is observed. For the dissipative \(\varLambda \)-type atomic system, however, similar phenomenon of quantum interference does not exist. We demonstrate that quantum interference can be used to protect effectively the quantum entanglement and quantum coherence. The control of the transition from Markovian to non-Markovian processes is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Lindblad, G.: On the generators of quantum dynamical semigroups. Commun. Math. Phys. 48, 119–130 (1976)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  2. Gorini, V., Kossakowski, A., Sudarshan, E.C.G.: Completely positive dynamical semigroups of N-level systems. J. Math. Phys. 17, 821–825 (1976)

    Article  ADS  MathSciNet  Google Scholar 

  3. Breuer, H.P., Laine, E.M., Piilo, J.: Measure for the degree of non-Markovian behavior of quantum processes in open systems. Phys. Rev. Lett. 103(1–4), 210401 (2009)

    Article  ADS  MathSciNet  Google Scholar 

  4. Laine, E.M., Piilo, J., Breuer, H.P.: Measure for the non-Markovianity of quantum processes. Phys. Rev. A 81(1–8), 062115 (2010)

    Article  ADS  Google Scholar 

  5. Rivas, Á., Huelga, S.F., Plenio, M.B.: Entanglement and non-Markovianity of quantum evolutions. Phys. Rev. Lett. 105(1–4), 050403 (2010)

    Article  ADS  MathSciNet  Google Scholar 

  6. Lu, X.M., Wang, X.G., Sun, C.P.: Quantum Fisher information flow and non-Markovian processes of open systems. Phys. Rev. A 82(1–4), 042103 (2010)

    Article  ADS  Google Scholar 

  7. Luo, S., Fu, S., Song, H.: Quantifying non-Markovianity via correlations. Phys. Rev. A 86(1–4), 044101 (2012)

    Article  ADS  Google Scholar 

  8. Chruscinski, D., Maniscalco, S.: Degree of non-Markovianity of quantum evolution. Phys. Rev. Lett. 112(1–5), 120404 (2014)

    Article  ADS  Google Scholar 

  9. Hall, M.J.W., Cresser, J.D., Li, L., Andersson, E.: Canonical form of master equations and characterization of non-Markovianity. Phys. Rev. A 89(1–11), 042120 (2014)

    Article  ADS  Google Scholar 

  10. Fanchini, F.F., Karpat, G., Cakmak, B., Castelano, L.K., Aguilar, G.H., Farias, O.J., Walborn, S.P., Souto Ribeiro, P.H., de Oliveira, M.C.: Non-Markovianity through accessible information. Phys. Rev. Lett. 112(1–5), 210402 (2014)

    Article  ADS  Google Scholar 

  11. Chruscinski, D., Macchiavello, C., Maniscalco, S.: Detecting non-Markovianity of quantum evolution via spectra of dynamical maps. Phys. Rev. Lett. 118(1–5), 080404 (2017)

    Article  ADS  Google Scholar 

  12. Song, H., Luo, S., Hong, Y.: Quantum non-Markovianity based on the Fisher-information matrix. Phys. Rev. A 91(1–6), 042110 (2015)

    Article  ADS  Google Scholar 

  13. Chen, S.L., Lambert, N., Li, C.M., Miranowicz, A., Chen, Y.N., Nori, F.: Quantifying non-markovianity with temporal steering. Phys. Rev. Lett. 116(1–6), 020503 (2016)

    Article  ADS  Google Scholar 

  14. Dhar, H.S., Bera, M.N., Adesso, G.: Characterizing non-Markovianity via quantum interferometric power. Phys. Rev. A 91(1–9), 032115 (2015)

    Article  ADS  Google Scholar 

  15. Paula, F.M., Obando, P.C., Sarandy, M.S.: Non-Markovianity through multipartite correlation measures. Phys. Rev. A 93(1–6), 042337 (2016)

    Article  ADS  Google Scholar 

  16. He, Z., Zeng, H.S., Li, Y., Wang, Q., Yao, C.M.: Non-Markovianity measure based on the relative entropy of coherence in an extended space. Phys. Rev. A 96(1–7), 022106 (2017)

    Article  ADS  Google Scholar 

  17. Breuer, H.P., Vacchini, B.: Quantum semi-Markov processes. Phys. Rev. Lett. 101(1–4), 140402 (2008)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  18. Shabani, A., Lidar, D.A.: Vanishing quantum discord is necessary and sufficient for completely positive maps. Phys. Rev. Lett. 102(1–4), 100402 (2009)

    Article  ADS  Google Scholar 

  19. Breuer, H.P., Vacchini, B.: Structure of completely positive quantum master equations with memory kernel. Phys. Rev. E 79(1–12), 041147 (2009)

    Article  ADS  MathSciNet  Google Scholar 

  20. Haikka, P., Johnson, T.H., Maniscalco, S.: Non-Markovianity of local dephasing channels and time-invariant discord. Phys. Rev. A 87(R1–5), 010103 (2013)

    Article  ADS  Google Scholar 

  21. Addis, C., Brebner, G., Haikka, P., Maniscalco, S.: Coherence trapping and information backflow in dephasing qubits. Phys. Rev. A 89(1–4), 024101 (2014)

    Article  ADS  Google Scholar 

  22. Zeng, H.S., Zheng, Y.P., Tang, N., Wang, G.Y.: Correlation quantum beats induced by non-Markovian effect. Quantum Inf. Process 12, 1637–1650 (2013)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  23. Chruściński, D., Kossakowski, A., Pascazio, S.: Long-time memory in non-Markovian evolutions. Phys. Rev. A 81(1–6), 032101 (2010)

    Article  ADS  Google Scholar 

  24. Haikka, P., Cresser, J.D., Maniscalco, S.: Comparing different non-Markovianity measures in a driven qubit system. Phys. Rev. A 83(1–5), 012112 (2011)

    Article  ADS  Google Scholar 

  25. Zeng, H.S., Tang, N., Zheng, Y.P., Wang, G.Y.: Equivalence of the measure of non-Markovianity for open two-level systems. Phys. Rev. A 84(1–6), 032118 (2011)

    Article  ADS  Google Scholar 

  26. Wissmann, S., Breuer, H.P., Vacchini, B.: Generalized trace-distance measure connecting quantum and classical non-Markovianity. Phys. Rev. A 92(1–10), 042108 (2015)

    Article  ADS  Google Scholar 

  27. Bae, J., Chruscinski, D.: Operational characterization of divisibility of dynamical maps. Phys. Rev. Lett. 117(1–6), 050403 (2016)

    Article  ADS  Google Scholar 

  28. Bylicka, B., Johansson, M., Acin, A.: Constructive method for detecting the information backflow of non-Markovian dynamics. Phys. Rev. Lett. 118(1–5), 120501 (2017)

    Article  ADS  Google Scholar 

  29. Liu, Y., Cheng, W., Gao, Z.Y., Zeng, H.S.: Environmental coherence and excitation effects in non-Markovian dynamics. Opt. Express 23, 023021–023034 (2015)

    Article  Google Scholar 

  30. Chin, A.W., Huelga, S.F., Plenio, M.B.: Quantum metrology in non-Markovian environments. Phys. Rev. Lett. 109(1–5), 233601 (2012)

    Article  ADS  Google Scholar 

  31. Ren, Y.K., Tang, L.M., Zeng, H.S.: Protection of quantum Fisher information in entangled states via classical driving. Quantum Inf. Process 15, 5011–5021 (2016)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  32. Ren, Y.K., Wang, X.L., Zeng, H.S.: Protection of quantum Fisher information for multiple phases in open quantum systems. Quantum Inf. Process 17(1–16), 5 (2018)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  33. Vasile, R., Olivares, S., Paris, M.G.A., Maniscalco, S.: Continuous-variable quantum key distribution in non-Markovian channels. Phys. Rev. A 83(1–6), 042321 (2011)

    Article  ADS  Google Scholar 

  34. Laine, E.M., Breuer, H.P., Piilo, J.: Nonlocal memory effects allow perfect teleportation with mixed states. Sci. Rep. 4(1–5), 4620 (2014)

    Google Scholar 

  35. Bylicka, B., Chruściński, D., Maniscalco, S.: Non-Markovianity and reservoir memory of quantum channels: a quantum information theory perspective. Sci. Rep. 4(1–7), 5720 (2014)

    ADS  Google Scholar 

  36. Tang, N., Fan, Z.L., Zeng, H.S.: Improving the quality of noisy spatial quantum channels. Quantum Inf. Comput. 15, 0568–0581 (2015)

    MathSciNet  Google Scholar 

  37. Schmidt, R., Negretti, A., Ankerhold, J., Calarco, T., Stockburger, J.T.: Optimal control of open quantum systems: cooperative effects of driving and dissipation. Phys. Rev. Lett. 107(1–5), 130404 (2011)

    Article  ADS  Google Scholar 

  38. Dalton, B.J., Barnett, S.M., Garraway, B.M.: Theory of pseudomodes in quantum optical processes. Phys. Rev. A 64(1–21), 053813 (2001)

    Article  ADS  MATH  Google Scholar 

  39. Gu, W.J., Li, G.X.: Non-Markovian behavior for spontaneous decay of a V-type three-level atom with quantum interference. Phys. Rev. A 85(1–4), 014101 (2012)

    Article  ADS  Google Scholar 

  40. Bruß, D., Macchiavello, C.: Optimal eavesdropping in cryptography with three-dimensional quantum states. Phys. Rev. Lett. 88(1–4), 127901 (2002)

    Article  ADS  Google Scholar 

  41. Cerf, N.J., Bourennane, M., Karlsson, A., Gisin, N.: Security of quantum key distribution using d-level systems. Phys. Rev. Lett. 88(1–4), 127902 (2002)

    Article  ADS  Google Scholar 

  42. Knill, E.: Fault-tolerant postselected quantum computation: schemes (2004). arXiv:quant-ph/0402171

  43. Scully, M.O., Zubairy, M.S.: Quantum Optics. Cambridge University Press, Cambridge (1997)

    Book  Google Scholar 

  44. Zhou, P., Swain, S.: Ultranarrow spectral lines via quantum interference. Phys. Rev. Lett. 77, 3995–3998 (1996)

    Article  ADS  Google Scholar 

  45. Zhu, S.Y., Scully, M.O.: Spectral line elimination and spontaneous emission cancellation via quantum interference. Phys. Rev. Lett. 76, 388–391 (1996)

    Article  ADS  Google Scholar 

  46. Peres, A.: Separability criterion for density matrices. Phys. Rev. Lett. 77, 1413–1415 (1996)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  47. Horodečki, P.: Separability criterion and inseparable mixed states with positive partial transposition. Phys. Lett. A 232, 333–339 (1997)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  48. Werner, R.F.: Quantum states with Einstein–Podolsky–Rosen correlations admitting a hidden-variable model. Phys. Rev. A 40, 4277–4281 (1989)

    Article  ADS  MATH  Google Scholar 

  49. Baumgratz, T., Cramer, M., Plenio, M.B.: Quantifying coherence. Phys. Rev. Lett 113(1–5), 140401 (2014)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work is supported by the National Natural Science Foundation of China (Grant No. 11275064), the Specialized Research Fund for the Doctoral Program of Higher Education (Grant No. 20124306110003) and the Construct Program of the National Key Discipline.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hao-Sheng Zeng.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix A: The inverse Laplace transformation of Eqs. (11), (12) for the degenerate cases

If the polynomials \(p^{3}+h_{1}p^{2}+h_{2}p+h_{3}=0\) have a twofold root \(b_{1}\) and a single root \(b_{3}\), then the decomposition of Eqs. (11) and (12) becomes

figure j

where

figure k

with

$$\begin{aligned} {\hat{E}}_{1}= & {} \frac{b_{1}^{2}-(2b_{1}+M+\mathrm{i}\omega _{2})b_{3}-\mathrm{i}\omega _{2}M-B_{22}}{(b_{1}-b_{3})^{2}},\\ {\hat{F}}_{1}= & {} \frac{B_{12}}{(b_{1}-b_{3})^{2}},\\ {\hat{E}}_{2}= & {} \frac{(b_{1}+\mathrm{i}\omega _{2})(b_{1}+M)+B_{22}}{b_{1}-b_{3}},\\ {\hat{F}}_{2}= & {} -\frac{B_{12}}{b_{1}-b_{3}},\\ {\hat{E}}_{3}= & {} \frac{(b_{3}+\mathrm{i}\omega _{2})(b_{3}+M)+B_{22}}{(b_{1}-b_{3})^{2}},\\ {\hat{F}}_{3}= & {} -\frac{B_{12}}{(b_{1}-b_{3})^{2}}, \end{aligned}$$

and

$$\begin{aligned} {\hat{G}}_{1}= & {} \frac{b_{1}^{2}-(2b_{1}+M+\mathrm{i}\omega _{1})b_{3}-\mathrm{i}\omega _{1}M-B_{11}}{(b_{1}-b_{3})^{2}},\\ {\hat{H}}_{1}= & {} \frac{B_{21}}{(b_{1}-b_{3})^{2}},\\ {\hat{G}}_{2}= & {} \frac{(b_{1}+\mathrm{i}\omega _{1})(b_{1}+M)+B_{11}}{b_{1}-b_{3}},\\ {\hat{H}}_{2}= & {} -\frac{B_{21}}{b_{1}-b_{3}},\\ {\hat{G}}_{3}= & {} \frac{(b_{3}+\mathrm{i}\omega _{1})(b_{3}+M)+B_{11}}{(b_{1}-b_{3})^{2}},\\ {\hat{H}}_{3}= & {} -\frac{B_{21}}{(b_{1}-b_{3})^{2}}. \end{aligned}$$

The inverse Laplace transformation of Eqs. (A.1a) and (A.1b) gives the evolution

figure l

with

$$\begin{aligned} {\hat{E}}(t)= & {} ({\hat{E}}_{1}+{\hat{E}}_{2}t)\mathrm{e}^{b_{1}t}+{\hat{E}}_{3}\mathrm{e}^{b_{3}t},\\ {\hat{F}}(t)= & {} ({\hat{F}}_{1}+{\hat{F}}_{2}t)\mathrm{e}^{b_{1}t}+{\hat{F}}_{3}\mathrm{e}^{b_{3}t},\\ {\hat{G}}(t)= & {} ({\hat{G}}_{1}+{\hat{G}}_{2}t)\mathrm{e}^{b_{1}t}+{\hat{G}}_{3}\mathrm{e}^{b_{3}t},\\ {\hat{H}}(t)= & {} ({\hat{H}}_{1}+{\hat{H}}_{2}t)\mathrm{e}^{b_{1}t}+{\hat{H}}_{3}\mathrm{e}^{b_{3}t}. \end{aligned}$$

If the polynomials \(p^{3}+h_{1}p^{2}+h_{2}p+h_{3}=0\) have only one threefold root b, then Eqs. (11) and (12) become

figure m

where

$$\begin{aligned} {\check{D}}_{3}= & {} [(b+\mathrm{i}\omega _{2})(b+M)+B_{22}]c_{1}(0)-B_{12}c_{2}(0),\\ {\check{D}}_{2}= & {} (2b+M+\mathrm{i}\omega _{2})c_{1}(0),\\ {\check{D}}_{1}= & {} 2c_{1}(0),\\ {\check{D}}'_{3}= & {} [(b+\mathrm{i}\omega _{1})(b+M)+B_{11}]c_{2}(0)-B_{21}c_{1}(0),\\ {\check{D}}'_{2}= & {} (2b+M+\mathrm{i}\omega _{1})c_{2}(0),\\ {\check{D}}'_{1}= & {} 2c_{2}(0). \end{aligned}$$

The inverse Laplace transformation of Eqs. (A.4a) and (A.4b) gives

figure n

with \({\check{E}}(t)=\{\frac{1}{2}[(b+\mathrm{i}\omega _{2})(b+M)+B_{22}]t^{2}+(2b+M+\mathrm{i}\omega _{2})t+2\}\mathrm{e}^{bt}\), \({\check{F}}(t)=-\frac{1}{2}B_{12}t^{2}\mathrm{e}^{bt}\), \({\check{G}}(t)=\{\frac{1}{2}[(b+\mathrm{i}\omega _{1})(b+M)+B_{11}]t^{2}+(2b+M+\mathrm{i}\omega _{1})t+2\}\mathrm{e}^{bt}\), \({\check{H}}(t)=-\frac{1}{2}B_{21}t^{2}\mathrm{e}^{bt}\).

Appendix B: Proof of no real root of Eqs. (34a), (34b)

If \(\lambda \ne 0\), then \(\chi \ne 0\). Multiplying Eq. (34a) by \(\chi /2\) and then subtracting Eq. (34b), one has

$$\begin{aligned} (\delta _{1}+\delta _{2})\chi ^{2}-\left[ 2\lambda ^{2}-2\delta _{1}\delta _{2}+\frac{\lambda }{2}(\gamma _{1}+\gamma _{2})\right] \chi -\lambda (\gamma _{1}\delta _{2}+\gamma _{2}\delta _{1})=0 \end{aligned}$$
(B.1)

If \(\delta _{1}+\delta _{2}\ne 0\), multiplying Eq. (34a) by \((\delta _{1}+\delta _{2})/2\) and then subtracting Eq. (B.1), one gets

$$\begin{aligned} \chi =\frac{\lambda \gamma _{1}(3\delta _{2}-\delta _{1})+\lambda \gamma _{2}(3\delta _{1}-\delta _{2})}{8\lambda ^{2}+2(\delta _{1}-\delta _{2})^{2}+2\lambda (\gamma _{1}+\gamma _{2})}. \end{aligned}$$
(B.2)

Plugging it into Eq. (34a), we can obtain the quadratic equation with respect to \(\omega _{0}\),

$$\begin{aligned} a\omega _{0}^{2}+b\omega _{0}+c=0 \end{aligned}$$
(B.3)

where \( a=4\lambda ^{2}(u+v)^{2}+4\lambda n(u+v)\), \( b=-8\lambda ^{2}(u+v)(\omega _{1}u+\omega _{2}v)-2\lambda n[(3\omega _{1}+\omega _{2})u+(3\omega _{2}+\omega _{1})v]\) and \(c=4\lambda ^{2}(\omega _{1}u+\omega _{2}v)^{2}+2\lambda n(\omega _{1}+\omega _{2})(\omega _{1}u+\omega _{2}v)+\frac{1}{2}\lambda n^{2}(u+v)\), with \(u=\gamma _{1}-3\gamma _{2}\), \(v=\gamma _{2}-3\gamma _{1}\) and \(n=2(\omega _{1}-\omega _{2})^{2}+8\lambda ^{2}+2\lambda (\gamma _{1}+\gamma _{2})\). The discriminant of Eq. (B.3) is

$$\begin{aligned} \varDelta= & {} b^{2}-4ac\\= & {} -256\lambda ^{2}n^{2}[\gamma _{1}\gamma _{2}(\omega _{1}-\omega _{2})^{2}+\lambda ^{2}(\gamma _{1}+\gamma _{2})^{2}]<0, \end{aligned}$$

which implies that \(\omega _{0}\) is a complex number.

If \(\delta _{1}+\delta _{2}= 0\), then Eqs. (34a) and (B.1) reduce, respectively, to

$$\begin{aligned}&4\chi ^{2}-\lambda (\gamma _{1}+\gamma _{2})=0, \end{aligned}$$
(B.4)
$$\begin{aligned}&[4\lambda ^{2}+4\delta _{1}^{2}+\lambda (\gamma _{1}+\gamma _{2})]\chi -\lambda \delta _{1}(\gamma _{1}-\gamma _{2})=0. \end{aligned}$$
(B.5)

Combining them to eliminate \(\chi \), we get the quadratic equation with respect to \(\delta _{1}\)

$$\begin{aligned} \pm \sqrt{(\gamma _{1}+\gamma _{2})\lambda }\delta _{1}^{2}-\lambda (\gamma _{1}-\gamma _{2})\delta _{1}\pm \sqrt{(\gamma _{1}+\gamma _{2})\lambda ^{5}} \pm \frac{1}{4}[(\gamma _{1}+\gamma _{2})\lambda ]^{3/2}=0. \end{aligned}$$
(B.6)

This equation also leads to \(\delta _{1}\) only having complex roots.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zeng, HS., Ren, YK., Wang, XL. et al. Non-Markovian dynamics and quantum interference in open three-level quantum systems. Quantum Inf Process 18, 378 (2019). https://doi.org/10.1007/s11128-019-2493-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11128-019-2493-1

Keywords

Navigation