Skip to main content
Log in

Planar k-uniform states: a generalization of planar maximally entangled states

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

Recently, Doroudiani and Karimipour [Phys. Rev. A 102 012427(2020)] proposed the notation of planar maximally entangled states which are a wider class of multipartite entangled states than absolutely maximally entangled states. There they presented their constructions in the multipartite systems but the number of particles is restricted to be even. Here, we first solve the remaining cases, i.e., constructions of planar maximally entangled states on systems with odd number of particles. In addition, we generalized the PME to the planar k-uniform states whose reductions to any adjacent k parties along a circle of N parties are maximally mixed. We presented a method to construct sets of planar k-uniform states which have minimal support.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Bennett, C.H., Brassard, G., Crpeau, C., Jozsa, R., Peres, A., Wootters, W.K.: Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels. Phys. Rev. Lett. 70, 1895 (1993)

    Article  ADS  MathSciNet  Google Scholar 

  2. Bouwmeester, D., Pan, J.-W., Mattle, K., Eibl, M., Weinfurter, H., Zeilinger, A.: Experimental quantum teleportation. Nature. 390, 575–579 (1997)

    Article  ADS  Google Scholar 

  3. Horodecki, R., Horodecki, P., Horodecki, M., Horodecki, K.: Quantum entanglement. Rev. Mod. Phys. 81, 865 (2009)

    Article  ADS  MathSciNet  Google Scholar 

  4. Perseguers, S., Lapeyre, G.J., Jr., Cavalcanti, D., Lewenstein, M., Acín, A.: Distribution of entanglement in large-scale quantum networks. Reports on Progress in Physics 76, 9 (2013)

  5. Giovannetti, V., Lloyd, S., Maccone, L.: Quantum metrology. Phys. Rev. Lett. 96, 010401 (2006)

    Article  ADS  MathSciNet  Google Scholar 

  6. Giovannetti, V., Lloyd, S., Maccone, L.: Quantum enhanced measurements: beating the standard quantum limit. Science 306, 1330 (2004)

    Article  ADS  Google Scholar 

  7. Demkowicz-Dobrzański, R., Maccone, L.: Using entanglement against noise in quantum metrology. Phys. Rev. Lett. 113, 250801 (2014)

    Article  ADS  Google Scholar 

  8. Raussendorf, R., Briegel, H.: A one-way quantum computer. Phys. Rev. Lett. 86, 5188 (2001)

    Article  ADS  Google Scholar 

  9. Greenberger, D.M., Horne, M.A., Shimony, A.: Bell theorem without inequalities. Am. J. Phys. 58, 1131 (1990)

    Article  ADS  MathSciNet  Google Scholar 

  10. Dür, W., Vidal, G., Cirac, J.I.: Three qubits can be entangled in two inequivalent ways. Phys. Rev. A 62, 062314 (2000)

    Article  ADS  MathSciNet  Google Scholar 

  11. Facchi, P., Florio, G., Parisi, G., Pascazio, S.: Maximally multipartite entangled states. Phys. Rev. A 77, 060304 (2008)

    Article  ADS  MathSciNet  Google Scholar 

  12. Raissi, Z., Gogolin, C., Riera, A., Acin, A.: Constructing optimal quantum error correcting codes from absolute maximally entangled states. J. Phys A: Math. and Theor. 51, 075301 (2017)

    Article  ADS  Google Scholar 

  13. Raissi, Z., Karimipour, V.: Creating maximally entangled states by gluing. Quantum Inf. Process. 16, 81 (2017)

    Article  ADS  MathSciNet  Google Scholar 

  14. Helwig, W., Cui, W., Latorre, J.I., Riera, A., Lo, H.K.: Absolute maximal entanglement and quantum secret sharing. Phys. Rev. A 86, 052335 (2012)

    Article  ADS  Google Scholar 

  15. Helwig, W.: Absolutely Maximally Entangled Qudit Graph States. arXiv:1306.2879

  16. Huber, F., Gühne, O., Siewert, J.: Absolutely maximally entangled states of seven qubits do not exist. Phys. Rev. Lett. 118, 200502 (2017)

    Article  ADS  Google Scholar 

  17. Huber, F., Eltschka, C., Siewert, J., Gühne, O.: Bounds on absolutely maximally entangled states from shadow inequalities, and the quantum MacWilliams identity. J. Phys. A 51, 175301 (2018)

    Article  ADS  MathSciNet  Google Scholar 

  18. Goyeneche, D., Życzkowski, K.: Genuinely multipartite entangled states and orthogonal arrays. Phys. Rev. A 90, 022316 (2014)

    Article  ADS  Google Scholar 

  19. Goyeneche, D., Alsina, D., Latorre, J.I., Riera, A., Życzkowski, K.: Absolutely maximally entangled states, combinatorial designs, and multiunitary matrices. Phys. Rev. A 92, 032316 (2015)

    Article  ADS  Google Scholar 

  20. Goyeneche, D., Raissi, Z., Martino, S.D., Życzkowski, K.: Entanglement and quantum combinatorial designs. Phys. Rev. A 97, 062326 (2018)

    Article  ADS  Google Scholar 

  21. Li, M.-S., Wang, Y.-L.: \(k\)-uniform quantum states arising from orthogonal arrays. Phys. Rev. A 99, 042332 (2019)

    Article  ADS  Google Scholar 

  22. Pang, S.-Q., Zhang, X., Lin, X., Zhang, Q.-J.: Two and three-uniform states from irredundant orthogonal arrays. Quant. Inform. 5, 52 (2019)

    Article  ADS  Google Scholar 

  23. Raissi, Z., Teixido, A., Gogolin, C., Acin, A.: Constructions of \(k\)-uniform and absolutely maximally entangled states beyond maximum distance codes. Phys. Rev. Research 2, 033411 (2020)

    Article  ADS  Google Scholar 

  24. Shi, F., Shen, Y., Chen, L., Zhang, X.: Constructions of \(k\)-uniform states from mixed orthogonal arrays. arXiv:2006.04086 (2020)

  25. Shi, F., Li, M.-S., Chen, L., and Zhang, X.: \(k\)-uniform states and quantum information masking. arXiv:2009.12497 (2020)

  26. Doroudiani, M., Karimipour, V.: Planar maximally entangled states. Phys. Rev. A 102, 012427 (2020)

    Article  ADS  MathSciNet  Google Scholar 

  27. Hillery, M., Bu\(\hat{z}\)ek, V., and Berthiaume, A.: Quantum secret sharing. Phys. Rev. A 59, 1829. https://journals.aps.org/pra/abstract/10.1103/PhysRevA.59.1829 (1999)

  28. Cleve, R., Gottesman, D., Lo, H.-K.: How to share a quantum secret? Phys. Rev. Lett. 83, 648 (1999)

    ADS  Google Scholar 

  29. Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information. Cambridge University Press, Cambridge (2004)

    MATH  Google Scholar 

  30. Markiewicz, M., Laskowski, W., Paterek, T., Zukowski, M.: Detecting genuine multipartite entanglement of pure states with bipartite correlations. Phys. Rev. A 87, 034301 (2013)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The author is very grateful to the reviewers for providing us many useful suggestions which have greatly improved the results of our paper. The author thanks Mao-Sheng Li for helpful discussion on the constructions of canonical circle block. This work is supported by National Natural Science Foundation of China with Grant No. 11901084, No. 61773119 and the Research startup funds of DGUT with Grant No. GC300501-103.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yan-Ling Wang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix: A the proof of the Von Neumann entropy for \(|\Phi _o\rangle _{{\mathcal {A}}|{\mathcal {B}}}\)

Case I \(t=0\). If \({\mathcal {A}}_u=\{A_{j_1},\cdots ,A_{j_s}\}\) and \({\mathcal {B}}_p=\{A_{i_{j_x}},\overline{A}_{i_{j_x}}\}_{{x=s+1}}^n\), then

$$\begin{aligned} |\Phi _o\rangle _{{\mathcal {A}}|{\mathcal {B}}}=\frac{1}{d^{s/2}}\sum _{i_{j_1},\cdots ,i_{j_s}=0}^{d-1}\left( |i_{j_1}\rangle _{A_{j_1}}\cdots |i_{j_s}\rangle _{A_{j_s}} \bigotimes |e_{i_{j_1},\cdots ,i_{j_s}}\rangle _{{\mathcal {B}}}\right) \end{aligned}$$

where \(|e_{i_{j_1},\cdots ,i_{j_s}}\rangle _{{\mathcal {B}}} :=\frac{1}{d^{(n-s)/2}}\sum _{i_{j_{s+1}},\cdots ,i_{j_{n}}=0}^{d-1} |i_{j_1}\rangle _{\overline{A}_{j_1}}\cdots |i_{j_s}\rangle _{\overline{A}_{j_s}}(\otimes _{x=s+1}^n|i_{j_x}i_{j_x}\rangle _{ {A}_{j_x},\overline{A}_{j_x}}) |\oplus _{y=1}^n i_{j_y}\rangle _{B_1}.\) One can check that the set \(\{|e_{i_{j_1},\cdots ,i_{j_s}}\rangle _{{\mathcal {B}}}\}_{i_{j_1},\cdots ,i_{j_s}=0}^{d-1}\) is an orthonormal set. Therefore, we have \(S(|\Phi _o\rangle _{{\mathcal {A}}|{\mathcal {B}}})=s\log d\) for this bipartition. Case II \(t\ge 1.\) If \({\mathcal {A}}_u=\{A_{j_1},\cdots ,A_{j_s}\}\), \({\mathcal {A}}_p=\{A_{i_{j_x}},\overline{A}_{i_{j_x}}\}_{{x=s+1}}^{s+t}\) and \({\mathcal {B}}_p=\{A_{i_{j_y}},\overline{A}_{i_{j_y}}\}_{{y=s+t+1}}^n\), then we have

$$\begin{aligned} |\Phi _o\rangle _{{\mathcal {A}}|{\mathcal {B}}}=\frac{1}{d^{(s+1)/2}}\sum _{i_{j_1},\cdots ,i_{j_s}=0}^{d-1} \sum _{i=0}^{d-1}\left( |e_{i_{j_1},\cdots ,i_{j_s},i}\rangle _{{\mathcal {A}}}\bigotimes |e_{i_{j_1},\cdots ,i_{j_s},i}\rangle _{{\mathcal {B}}}\right) \end{aligned}$$
(A1)

where \(|e_{i_{j_1},\cdots ,i_{j_s},i}\rangle _{{\mathcal {A}}}\) and \(|e_{i_{j_1},\cdots ,i_{j_s},i}\rangle _{{\mathcal {B}}}\) are defined as

$$\begin{aligned} \begin{array}{ccl} |e_{i_{j_1},\cdots ,i_{j_s},i}\rangle _{{\mathcal {A}}}:&{}=&{}\frac{1}{d^{(t-1)/2}}\displaystyle \sum _{\oplus _{x=s+1}^{s+t}i_{j_{x}}=i}|i_{j_1}\rangle _{A_{j_1}}\cdots |i_{j_s}\rangle _{A_{j_s}}( \otimes _{x=s+1}^{s+t}|i_{j_x}i_{j_x}\rangle _{ {A}_{j_x},\overline{A}_{j_x}}),\\ |e_{i_{j_1},\cdots ,i_{j_s},i}\rangle _{{\mathcal {B}}}\!:&{}=&{}\! \frac{1}{d^{(n-s-t)/2}}\displaystyle \sum _{i_{j_{s+t+1}},\cdots ,i_{j_{n}}=0}^{d-1} |i_{j_1}\rangle _{\overline{A}_{j_1}}\cdots |i_{j_s}\rangle _{\overline{A}_{j_s}}(\otimes _{y=s+t+1}^n|i_{j_y}i_{j_y}\rangle _{ {A}_{j_y},\overline{A}_{j_y}}) |\\ &{}&{}(\oplus _{z=1}^s i_{j_z})\oplus i\oplus (\oplus _{u=s+t+1}^n i_{j_u})\rangle _{B_1}. \end{array} \end{aligned}$$

One can check that the set \(\{|e_{i_{j_1},\cdots ,i_{j_s},i}\rangle _{{\mathcal {A}}}\}_{i_{j_1},\cdots ,i_{j_s},i=0}^{d-1}\) and \(\{|e_{i_{j_1},\cdots ,i_{j_s},i}\rangle _{{\mathcal {B}}}\}_{i_{j_1},\cdots ,i_{j_s},i=0}^{d-1}\) are both orthonormal sets. Therefore, by Eq. (A1), we have \(S(|\Phi _o\rangle _{{\mathcal {A}}|{\mathcal {B}}})=(s+1)\log d.\) \(\square \)

Appendix: B the proof of Lemma 1

Step I Initializing a table of \((k+s)\times (k+s)\) as follows (See Table 3)

  1. (a)

    The coordinate \((r_i,c_j)\) is filled with j for integers ij with conditions \(1\le i\le (k+s)\) , \(1\le j\le k\), and \((i-j) \notin \{1,2,\cdots , s\}.\)

  2. (b)

    The coordinate \((r_i,c_{k+j})\) is filled with j for integer ij with conditions \(2\le i\le 1+s\), \(1\le j\le s\), and \(i\le j\).

One can see that each of the first seven rows are filled with k numbers \(\{1,2,\cdots ,k\}\).

Table 3 The initial data of the Step I of the proof of Lemma 1

Step II We then recursively define the j-th coordinates (\(j\ge k+1\)) of the \((i+1)\)-th row using the result of the i-th row when \(s+1\le i\le k+s-1\). Assume that there are exactly k elements named \(\{1,2,\cdots , k\}\) in the i-th row and the non-blank coordinates are \((r_i,c_j)\) with \(1\le j\le i-(s+1)\) and \(i\le j \le k+s\)(this is true for \(i=s+1\)). One finds that the \((i+1)\)-th row contains one more element than the i-th row at the left bottom triangle of the initialized table. In fact, that element is exactly \(i-s\) at the coordinate \((r_{i+1},c_{i-s})\). As \(\{1,2,\cdots , k\}\) are exactly the elements in the i-th row, there exists some x such that \( V (r_i,c_x)=i-s\). Moreover, as \( V (r_i,c_j)=j\) for \( 1\le j \le i-(s+1)\), so \( V (r_i,c_i)\ge i-s\). We will leave the coordinate \((r_{i+1},c_i)\) to be blank.

  1. (1)

    If \( V (r_i,c_i)\) happens to be \(i-s\), then we set \( V (r_{i+1},c_j)= V (r_{i},c_j)\) for \(j\ge i+1\). In this setting, we have \( V (r_{i+1},c_j)= V (r_i,c_j)\) for \(1\le j\le i-(s+1)\) or \(i+1\le j\le k+s\). In addition, we also have \( V (r_{i+1},c_{i-s})= V (r_{i },c_{i})=i-s.\) Therefore, there are also exactly k elements named \(\{1,2,\cdots , k\}\) in the \((i+1)\)-th row and the non-blank coordinates are \((r_{i+1},c_j)\) with \(1\le j\le (i+1)-(s+1)\) or \(i+1\le j \le k+s\).

  2. (2)

    If the element of the coordinate (\(r_i,c_i\)) do not equal to \(i-s\), i.e., \( V (r_i,c_i)>i-s\), one may find that \(x\ge i+1\) and \(x\in \{k+1,k+2,\cdots ,k+s\}\) (otherwise \( V (r_i,c_x)=x=i-s\), hence \(i-x=s\) which is contradicted with the condition (a) of step I). Then we set

    $$\begin{aligned} \ \ \ \ \ \ \ V (r_{i+1},c_j)=\left\{ \begin{array}{ll} V (r_{i},c_i), &{} j=x\\ V (r_{i},c_j),&{} j\ge i+1 \text { and } j\ne x. \end{array} \right. \end{aligned}$$

    In this setting, we have \( V (r_{i+1},c_j)= V (r_i,c_j)\) for \(1\le j\le i-(s+1)\) or \(i+1\le j\le k+s\) but \(j\ne x\). In addition, we have \( V (r_{i+1},c_{i-s})= V (r_{i },c_{x})=i-s\) and \( V (r_{i+1},c_{x})= V (r_{i },c_{i}).\) Therefore, there are also exactly k elements named \(\{1,2,\cdots , k\}\) in the \((i+1)\)-th row and the non-blank coordinates are \((r_{i+1},c_j)\) with \(1\le j\le (i+1)-(s+1)\) or \(i+1\le j \le k+s\). Note that

    $$\begin{aligned} V (r_{i+1},c_{x})= V (r_{i },c_{i})>i-s= V (r_{i},c_{x}). \end{aligned}$$
    (B1)

Note that for any fixed integer \(j\in [k+1, k+s]\), the elements in the j-th column are in a nondecreasing order from top to bottom, i.e., \( V (r_{i+1},c_{j})\ge V (r_{i},c_{j})\) whenever both elements are non-blank. If \( V (r_{i_2},c_{j})\) is strictly larger than \(V (r_{i_1},c_{j})\), we call \( V (r_{i_1},c_j)\) a predecessor of \( V (r_{i_2},c_j)\) in the j-th column and \( V (r_{i_2},c_j)\) a successor of \( V (r_{i_1},c_j)\) in the j-th column. Denote \({\mathcal {P}}_j( V (r_{i},c_j))\) (resp. \({\mathcal {S}}_j( V (r_{i},c_j))\)) to be the set of all predecessors (resp. successors) of \( V (r_{i},c_j)\) in the j-th column. Fixed \(s+2\le i+1\le k+s\), the predecessors of \( V (r_{i+1},c_j)\) in the j-th column (\(k+1\le j\le k+s\)) are contained in the set \(\{1,\cdots ,i-s\}\). This statement can be followed by the two facts. Fact 1: there is no predecessor at all of \( V (r_{s+1},c_j)\) in the j-th column. Fact 2: by step II and Eq. (B1), at most one more predecessor (say \(i-s\)) would be generated to one of the element in \((i+1)\)-th row for the recursive definition from i-th row to \((i+1)\)-th row.

Step III Read out of the non-blank elements for each column. For \(j\in \{1,2,\cdots ,k+s\}\), set

$$\begin{aligned} {\mathcal {I}}_j:=\{ V (r_i,c_j) | V (r_i,c_j) \text { is non-blank }, 1\le i\le k+s \}. \end{aligned}$$

We define a \((k+s)\)-tuple of maps \((f_1,f_2,\cdots ,f_{k+s})\) by \(f_j:=\oplus _{i\in {\mathcal {I}}_j } e_i\) (here and the following \(e_i\) denotes the i-th coordinate map from \(\mathbb {Z}_d^{k}\) to \(\mathbb {Z}_d\)). One finds that \({\mathcal {I}}_j=\{j\}\) for \(1\le j\le k\). Therefore, \(f_j=e_j\) for \( 1\le j\le k\).

We claim that the \((f_1,f_2,\cdots ,f_{k+s})\) defined above is indeed a canonical circle block of dimensional d. We need to check that any k adjacent maps \((f_i,f_{i+1},\cdots , f_{i+k-1})\) (where \(1\le i\le k+s\). If the subscript \(i+j\) is larger than \(k+s\), we replace the corresponding subscript \(i+j\) by \(i+j-(k+s)\)) is a bijective map from \(\mathbb {Z}_d^{k}\) to itself. It sufficient to show that for any \({\varvec{i}}:=(i_1,i_2,\cdots ,i_{k}),\) \({\varvec{i}}':=(i_1',i_2',\cdots ,i_{k}')\) in \( \mathbb {Z}_d^{k},\) \((f_i({\varvec{i}}),f_{i+1}({\varvec{i}}),\cdots , f_{i+k-1}({\varvec{i}}))\) equals to \((f_i({\varvec{i}}'),f_{i+1}({\varvec{i}}'),\cdots , f_{i+k-1}({\varvec{i}}'))\) implies \( {\varvec{i}}={\varvec{i}}'\). Firstly, we define

$$\begin{aligned} \begin{array}{rcl} {\mathcal {E}}_i:&{}=&{}\{l | V (r_i,c_l) \text { is non-blank }, 1\le l\le k \},\\ {\mathcal {J}}_i:&{}=&{}\{l | V (r_i,c_l) \text { is non-blank }, 1\le l\le k+s \}. \end{array} \end{aligned}$$

Under the above replacement, the set of subscripts in \((f_i,f_{i+1},\cdots , f_{i+k})\) is the same with the set \({\mathcal {J}}_i\). We separate the argument into three cases.

  1. (1)

    \(1\le i\le s+1\). For \(l\in {\mathcal {E}}_i\), \({\mathcal {I}}_l=\{l\}\), therefore \(f_l=e_l\). Hence \(i_l=i_l'\) for such l. And for any \(l\in \{1,2,\cdots , k\} \setminus {\mathcal {E}}_i\), there is exactly one j such that \( V (r_i,c_j)=l\). Moreover, there is no predecessor of l in the j-th column and the successors of l in the j-th column are just the set \({\mathcal {I}}_j\setminus \{l\}\) whose elements are all greater than or equal to \(s+1\). Hence we have \(l\in {\mathcal {I}}_j\) and \({\mathcal {I}}_j\setminus \{l\} \subseteq {\mathcal {E}}_i\). As \(f_j=\oplus _{i\in {\mathcal {I}}_j}e_i= e_l\oplus (\oplus _{i\in {\mathcal {I}}_j\setminus \{l\}}e_i)\), so \(f_j({\varvec{i}})=f_j({\varvec{i}}')\) implies that \(i_l=i_l'\). From these, we can conclude that \({\varvec{i}}={\varvec{i}}'\).

  2. (2)

    \(s+2\le i\le k\). For \(l\in {\mathcal {E}}_i\), \({\mathcal {I}}_l=\{l\}\), therefore \(f_l=e_l\). Hence \(i_l=i_l'\) for such l. Moreover, one finds that

    $$\begin{aligned} \{1,2,\cdots ,k\}\setminus {\mathcal {E}}_i=\{i-s, \cdots , i-1\}. \end{aligned}$$

    For \(l=i-1\), there exists exactly one \(j\in [k+1,k+s]\) such that \( V (r_i,c_j)=l\). We have noted that the predecessors of \( V (r_i,c_j) \) in the j-th column are in the set \(\{1,\cdots , i-(s+1)\}\subseteq {\mathcal {E}}_i\). As the nondecreasing property of the column, the successors of \(i-1\) of the l column can only be in \(\{i,\cdots ,k+s\}\subseteq {\mathcal {E}}_i\). In the expression \(f_l\), the \(e_l\) is the only one undetermined variable. Hence \(i_l=i_l'\). Now for \(l=i-2\), there is also exactly one \(j\in [k+1,k+s]\) such that \( V (r_i,c_j)=l\). We have \({\mathcal {P}}_j(l)\subseteq \{1,\cdots , i-(s+1)\}\subseteq {\mathcal {E}}_i\). Moreover, as the nondecreasing property of each column, \({\mathcal {S}}_j(l)\subseteq \{i-1,i,\cdots ,k+s\}\). The equality \(f_{j}({\varvec{i}})=f_{j}({\varvec{i}}')\) can be expressed as

    $$\begin{aligned} \ \ \ \ \ i_l \oplus (\oplus _{x\in {\mathcal {P}}_j(l)\cup {\mathcal {S}}_j(l)} i_x ) =i_l' \oplus (\oplus _{x\in {\mathcal {P}}_j(l)\cup {\mathcal {S}}_j(l)} i_x '). \end{aligned}$$

    As we already have \(i_x=i_x'\) for all \(x\in {\mathcal {P}}_j(l)\cup {\mathcal {S}}_j(l)\), hence \(i_l=i_l'\). This argument is similar for the other undetermined coordinates. Finally, we would also obtain \({\varvec{i}}={\varvec{i}}'\).

  3. (3)

    \(k+1\le i\le k+s\). For these cases, \({\mathcal {E}}_i=\{1,2,\cdots , i-(s+1)\}\). So \(e_1,\cdots ,e_{i-(s+1)}\) are among the list of \((f_i,f_{i+1},\cdots , f_{i+k-1})\). So we always have \(i_l=i_l'\) for \(1\le l\le i-(s+1)\). One finds that

    $$\begin{aligned} \{1,2,\cdots ,k\}\setminus {\mathcal {E}}_i=\{i-s, \cdots , k\}. \end{aligned}$$

    Let \(l=k\), there exists some \(j\ge k+1\) such that \(V(r_i,c_j)=l\). We have \({\mathcal {P}}_j(l)\subseteq {\mathcal {E}}_i\) and \({\mathcal {S}}_j(l)=\emptyset \). Then \(f_j({\varvec{i}})=f_j({\varvec{i}}')\) implies that \(i_{k}=i_{k}'\). For \(l=k-1\), there is also exactly one \(j\in [k+1,k+s]\) such that \( V (r_i,c_j)=l\). We have \({\mathcal {P}}_j(l) \subseteq {\mathcal {E}}_i\). Moreover, as the nondecreasing property of each column, \({\mathcal {S}}_j(l)\subseteq \{k\}\). The equality \(f_{j}({\varvec{i}})=f_{j}({\varvec{i}}')\) can be expressed as

    $$\begin{aligned} \ \ \ \ \ i_l \oplus (\oplus _{x\in {\mathcal {P}}_j(l)\cup {\mathcal {S}}_j(l)} i_x ) =i_l' \oplus (\oplus _{x\in {\mathcal {P}}_j(l)\cup {\mathcal {S}}_j(l)} i_x '). \end{aligned}$$

    As we already have \(i_x=i_x'\) for all \(x\in {\mathcal {P}}_j(l)\cup {\mathcal {S}}_j(l)\), hence \(i_l=i_l'\). This argument is similar for the other undetermined coordinates. Finally, we would also obtain \({\varvec{i}}={\varvec{i}}'\).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, YL. Planar k-uniform states: a generalization of planar maximally entangled states. Quantum Inf Process 20, 271 (2021). https://doi.org/10.1007/s11128-021-03204-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11128-021-03204-y

Keywords

Navigation