Skip to main content
Log in

Quantum walks of three interacting bosons on one-dimensional optical lattices

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

We investigate the quantum walks of a three-boson system on one-dimensional lattice by using the Bose–Hubbard model with two- and three-body interactions. We focus on the propagation of two- and three-particle correlations as well as density distributions for different typical initial states, thereby analyzing the formation of particle pairs and trios for the specific initial states after an evolution time. For the two cases of only considering two-body interaction and including the two- and three-body interactions simultaneously with a fixed strength ratio, we discuss in detail the variations of correlations and density distribution with the interaction strength.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Aharonov, Y., Davidovich, L., Zagury, N.: Quantum random walks. Phys. Rev. A 48(2), 1687–1690 (1993)

    Article  ADS  Google Scholar 

  2. Childs, A.M., Farhi, E., Gutmann, S.: An example of the difference between quantum and classical random walks. Quantum Inf. Process. 1–2, 35–43 (2002)

    Article  MathSciNet  Google Scholar 

  3. Kempe, J.: Quantum random walks: an introductory overview. Contemp. Phys. 44(4), 307–327 (2003)

    Article  ADS  Google Scholar 

  4. Schreiber, A., Cassemiro, K.N., Potoček, V., Gábris, A., Jex, I., Silberhorn, C.: Decoherence and disorder in quantum walks: from ballistic spread to localization. Phys. Rev. Lett. 106(18), 180403 (2011)

    Article  ADS  Google Scholar 

  5. Knight, P.L., Roldán, E., Sipe, J.E.: Quantum walk on the line as an interference phenomenon. Phys. Rev. A 68(2), 020301 (2003)

    Article  ADS  Google Scholar 

  6. Moqadam, J.K., Portugal, R., de Oliveira, M.C.: Quantum walks on a circle with optomechanical systems. Quantum Inform. Proc. 14(10), 3595–3611 (2015)

    Article  ADS  MathSciNet  Google Scholar 

  7. Childs, A.M., Goldstone, J.: Spatial search by quantum walk. Phys. Rev. A 70(2), 022314 (2004)

    Article  ADS  Google Scholar 

  8. Chakraborty, S., Novo, L., Ambainis, A., Omar, Y.: Spatial search by quantum walk is optimal for almost all graphs. Phys. Rev. Lett. 116(10), 100501 (2016)

    Article  ADS  Google Scholar 

  9. Childs, A.M.: Universal computation by quantum walk. Phys. Rev. Lett. 102(18), 180501 (2009)

    Article  ADS  MathSciNet  Google Scholar 

  10. Mülken, O., Blumen, A.: Continuous-time quantum walks: models for coherent transport on complex networks. Phys. Rep. 502(2–3), 37–87 (2011)

    Article  ADS  MathSciNet  Google Scholar 

  11. Mohseni, M., Rebentrost, P., Lloyd, S., Aspuru-Guzik, A.: Environment-assisted quantum walks in photosynthetic energy transfer. J. Chem. Phys. 129(17), 174106 (2008)

    Article  ADS  Google Scholar 

  12. Cho, M., Vaswani, H.M., Brixner, T., Stenger, J., Fleming, G.R.: Exciton analysis in 2D electronic spectroscopy. J. Phys. Chem. B 109(21), 10542–10556 (2005)

    Article  Google Scholar 

  13. Plenio, M.B., Huelga, S.F.: Dephasing-assisted transport: quantum networks and biomolecules. New J. Phys. 10, 113019 (2008)

    Article  ADS  Google Scholar 

  14. Wang, J., Manouchehri, K.: Physical Implementation of Quantum Walks. Springer, New York (2013)

    MATH  Google Scholar 

  15. Defienne, H., Barbieri, M., Walmsley, I.A., Smith, B.J., Gigan, S.: Two-photon quantum walk in a multimode fiber. Sci. Adv. 2(1), e1501054 (2016)

    Article  ADS  Google Scholar 

  16. Schmitz, H., Matjeschk, R., Schneider, C., Glueckert, J., Enderlein, M., Huber, T., Schaetz, T.: Quantum walk of a trapped ion in phase space. Phys. Rev. Lett. 103(9), 090504 (2009)

    Article  ADS  Google Scholar 

  17. Zähringer, F., Kirchmair, G., Gerritsma, R., Solano, E., Blatt, R., Roos, C.F.: Realization of a quantum walk with one and two trapped ions. Phys. Rev. Lett. 104(10), 100503 (2010)

    Article  ADS  Google Scholar 

  18. Karski, M., Förster, L., Choi, J.-M., Steffen, A., Alt, W., Meschede, D., Widera, A.: Quantum walk in position space with single optically trapped atoms. Science 325(5937), 174–177 (2009)

    Article  ADS  Google Scholar 

  19. Fukuhara, T., Schauß, P., Endres, M., Hild, S., Cheneau, M., Bloch, I., Gross, C.: Microscopic observation of magnon bound states and their dynamics. Nature 502(7469), 76 (2013)

    Article  ADS  Google Scholar 

  20. Wiater, D., Sowiński, T., Zakrzewski, J.: Two bosonic quantum walkers in one-dimensional optical lattices. Phys. Rev. A 96(4), 043629 (2017)

    Article  ADS  Google Scholar 

  21. Lahini, Y., Verbin, M., Huber, S.D., Bromberg, Y., Pugatch, R., Silberberg, Y.: Quantum walk of two interacting bosons. Phys. Rev. A 86(1), 011603 (2012). https://doi.org/10.1103/PhysRevA.86.011603

    Article  ADS  Google Scholar 

  22. Ahlbrecht, A., Alberti, A., Meschede, D., Scholz, V.B., Werner, A.H., Werner, R.F.: Molecular binding in interacting quantum walks. New J. Phys. 14, 073050 (2012)

    Article  ADS  Google Scholar 

  23. Crespi, A., Osellame, R., Ramponi, R., Giovannetti, V., Fazio, R., Sansoni, L., De Nicola, F., Sciarrino, F., Mataloni, P.: Anderson localization of entangled photons in an integrated quantum walk. Nat. Photon. 7(4), 322–328 (2013)

    Article  ADS  Google Scholar 

  24. Winkler, K., Thalhammer, G., Lang, F., Grimm, R., Denschlag, J.H., Daley, A., Kantian, A., Büchler, H., Zoller, P.: Repulsively bound atom pairs in an optical lattice. Nature 441(7095), 853–856 (2006)

    Article  ADS  Google Scholar 

  25. Will, S., Best, T., Schneider, U., Hackermüller, L., Lühmann, D.-S., Bloch, I.: Time-resolved observation of coherent multi-body interactions in quantum phase revivals. Nature (London) 465(7295), 197–201 (2010)

    Article  ADS  Google Scholar 

  26. Mark, M.J., Haller, E., Lauber, K., Danzl, J.G., Daley, A.J., Nägerl, H.-C.: Precision measurements on a tunable Mott insulator of ultracold atoms. Phys. Rev. Lett. 107(17), 175301 (2011)

    Article  ADS  Google Scholar 

  27. Daley, A.J., Taylor, J.M., Diehl, S., Baranov, M., Zoller, P.: Atomic three-body loss as a dynamical three-body interaction. Phys. Rev. Lett. 102(4), 040402 (2009)

    Article  ADS  Google Scholar 

  28. Bonnes, L., Wessel, S.: Pair superfluidity of three-body constrained bosons in two dimensions. Phys. Rev. Lett. 106(18), 185302 (2011)

    Article  ADS  Google Scholar 

  29. Singh, M., Mishra, T., Pai, R.V., Das, B.P.: Quantum phases of attractive bosons on a Bose–Hubbard ladder with three-body constraint. Phys. Rev. A 90(1), 013625 (2014)

    Article  ADS  Google Scholar 

  30. Chen, Y.-C., Ng, K.-K., Yang, M.-F.: Quantum phase transitions in the attractive extended Bose–Hubbard model with a three-body constraint. Phys. Rev. B 84(9), 092503 (2011)

    Article  ADS  Google Scholar 

  31. Johnson, P.R., Tiesinga, E., Porto, J.V., Williams, C.J.: Effective three-body interactions of neutral bosons in optical lattices. New J. Phys. 11, 093022 (2009)

    Article  ADS  Google Scholar 

  32. Daley, A.J., Simon, J.: Effective three-body interactions via photon-assisted tunneling in an optical lattice. Phys. Rev. A 89(5), 053619 (2014)

    Article  ADS  Google Scholar 

  33. Safavi-Naini, A., von Stecher, J., Capogrosso-Sansone, B., Rittenhouse, S.T.: First-order phase transitions in optical lattices with tunable three-body onsite interaction. Phys. Rev. Lett. 109(13), 135302 (2012)

    Article  ADS  Google Scholar 

  34. Petrov, D.S.: Elastic multibody interactions on a lattice. Phys. Rev. A 90(2), 021601(R) (2014)

    Article  ADS  Google Scholar 

  35. Petrov, D.S.: Three-body interacting bosons in free space. Phys. Rev. Lett. 112(10), 103201 (2014)

    Article  ADS  Google Scholar 

  36. Mondal, S., Kshetrimayum, A., Mishra, T.: Two-body repulsive bound pairs in a multibody interacting Bose–Hubbard model. Phys. Rev. A 102(2), 023312 (2020)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Key Research and Development Program of China under Grant No. 2016YFE0200700 and the National Natural Science Foundation of China under Grants Nos. 61627820, 61934003.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guo-Mo Zeng.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, HM., Zeng, GM. Quantum walks of three interacting bosons on one-dimensional optical lattices. Quantum Inf Process 20, 266 (2021). https://doi.org/10.1007/s11128-021-03202-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11128-021-03202-0

Keywords

Navigation