Skip to main content
Log in

Probabilistic catalyzed entanglement concentration of qubit pairs

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

We analytically obtain the maximum probability of converting a finite number of copies of an arbitrary two-qubit pure state to a single copy of a maximally entangled two-qubit pure state via entanglement-assisted local operations and classical communications using a two-qubit catalyst state, which may be destroyed when the conversion fails. We show that the optimal catalyst for this transformation is always more entangled than the initial state but any two-qubit state can act as a (non-optimal) catalyst. Interestingly, the entanglement of the optimal two-qubit catalyst state is shown to decrease with that of the initial state. The unitaries and measurements required for catalytic entanglement concentration are presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Notes

  1. d’ is the larger among the dimensions of the initial and final states in case they are unequal. The list of Schmidt coefficients of the state with smaller dimensions is padded with zeros to make the OSCs equal in length.

  2. For example, with two copies of \(|\alpha \rangle \), \(N_T=5\) T-transforms are required.

References

  1. Bennett, C.H., Bernstein, H.J., Popescu, S., Schumacher, B.: Concentrating partial entanglement by local operations. Phys. Rev. A 53, 2046 (1996). https://doi.org/10.1103/PhysRevA.53.2046

    Article  ADS  Google Scholar 

  2. Vidal, G.: Entanglement monotones. J. Mod. Opt. 47(2–3), 355 (2000). https://doi.org/10.1080/09500340008244048

    Article  ADS  MathSciNet  Google Scholar 

  3. Bennett, C.H., Brassard, G., Popescu, S., Schumacher, B., Smolin, J.A., Wootters, W.K.: Purification of noisy entanglement and faithful teleportation via noisy channels. Phys. Rev. Lett. 76, 722 (1996). https://doi.org/10.1103/PhysRevLett.76.722

    Article  ADS  Google Scholar 

  4. Santra, S., Kirby, B.T., Malinovsky, V.S., Brodsky, M.: Entanglement-enabled interferometry using telescopic arrays. J. Mod. Opt. 67(1), 9 (2020). https://doi.org/10.1080/09500340.2018.1511864

    Article  ADS  Google Scholar 

  5. Monroe, C., Raussendorf, R., Ruthven, A., Brown, K.R., Maunz, P., Duan, L.M., Kim, J.: Large-scale modular quantum-computer architecture with atomic memory and photonic interconnects. Phys. Rev. A 89, 022317 (2014). https://doi.org/10.1103/PhysRevA.89.022317

    Article  ADS  Google Scholar 

  6. Santra, S., Malinovsky, V.S.: Quantum networking with short-range entanglement assistance. Phys. Rev. A 103, 012407 (2021). https://doi.org/10.1103/PhysRevA.103.012407

    Article  ADS  MathSciNet  Google Scholar 

  7. Shukla, C., Malpani, P., Thapliyal, K.: Hierarchical quantum network using hybrid entanglement. Quantum Inf. Process. 20(3), 121 (2021)

    Article  ADS  MathSciNet  Google Scholar 

  8. Wilde, M.M.: Quantum Information Theory. Cambridge University Press, Cambridge (2017). https://doi.org/10.1017/9781316809976.001

    Book  MATH  Google Scholar 

  9. Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information. Cambridge University Press, Cambridge (2010). https://doi.org/10.1017/CBO9780511976667

    Book  MATH  Google Scholar 

  10. Lo, H.K., Popescu, S.: Concentrating entanglement by local actions: beyond mean values. Phys. Rev. A 63, 022301 (2001). https://doi.org/10.1103/PhysRevA.63.022301

    Article  ADS  Google Scholar 

  11. Bose, S., Vedral, V., Knight, P.L.: Purification via entanglement swapping and conserved entanglement. Phys. Rev. A 60, 194 (1999). https://doi.org/10.1103/PhysRevA.60.194

    Article  ADS  Google Scholar 

  12. Sheng, Y.B., Zhou, L., Zhao, S.M., Zheng, B.Y.: Efficient single-photon-assisted entanglement concentration for partially entangled photon pairs. Phys. Rev. A 85, 012307 (2012). https://doi.org/10.1103/PhysRevA.85.012307

    Article  ADS  Google Scholar 

  13. Kwiat, P.G., Barraza-Lopez, S., Stefanov, A., Gisin, N.: Experimental entanglement distillation and ‘hidden’ non-locality. Nature 409(6823), 1014 (2001). https://doi.org/10.1038/35059017

    Article  ADS  Google Scholar 

  14. Gu, Y.J., Li, W.D., Guo, G.C.: Protocol and quantum circuits for realizing deterministic entanglement concentration. Phys. Rev. A 73, 022321 (2006). https://doi.org/10.1103/PhysRevA.73.022321

    Article  ADS  Google Scholar 

  15. Jonathan, D., Plenio, M.B.: Entanglement-assisted local manipulation of pure quantum states. Phys. Rev. Lett. 83, 3566 (1999). https://doi.org/10.1103/PhysRevLett.83.3566

    Article  ADS  MathSciNet  MATH  Google Scholar 

  16. Eisert, J., Wilkens, M.: Catalysis of entanglement manipulation for mixed states. Phys. Rev. Lett. 85, 437 (2000). https://doi.org/10.1103/PhysRevLett.85.437

    Article  ADS  Google Scholar 

  17. Kondra, T.V., Datta, C., Streltsov, A.: Catalytic entanglement. arXiv:2102.11136 (2021)

  18. Lipka-Bartosik, P., Skrzypczyk, P.: Catalytic quantum teleportation. arXiv:2102.11846 (2021)

  19. Nielsen, M.A.: Conditions for a class of entanglement transformations. Phys. Rev. Lett. 83, 436 (1999). https://doi.org/10.1103/PhysRevLett.83.436

    Article  ADS  Google Scholar 

  20. Vidal, G.: Entanglement of pure states for a single copy. Phys. Rev. Lett. 83, 1046 (1999). https://doi.org/10.1103/PhysRevLett.83.1046

    Article  ADS  Google Scholar 

  21. Munro, W.J., Azuma, K., Tamaki, K., Nemoto, K.: Inside quantum repeaters. IEEE J. Sel. Top. Quantum Electron. 21(3), 78 (2015)

    Article  ADS  Google Scholar 

  22. Jones, D.E., Kirby, B.T., Brodsky, M.: Tuning quantum channels to maximize polarization entanglement for telecom photon pairs. npj Quantum Inf. 4(1), 58 (2018). https://doi.org/10.1038/s41534-018-0107-x

    Article  ADS  Google Scholar 

  23. ...Simon, C., Afzelius, M., Appel, J., Boyer de la Giroday, A., Dewhurst, S.J., Gisin, N., Hu, C.Y., Jelezko, F., Kröll, S., Müller, J.H., Nunn, J., Polzik, E.S., Rarity, J.G., De. Riedmatten, H., Rosenfeld, W., Shields, A.J., Sköld, N., Stevenson, R.M., Thew, R., Walmsley, I.A., Weber, M.C., Weinfurter, H., Wrachtrup, J., Young, R.J.: Quantum memories. Eur. Phys. J. D 58(1), 1 (2010). https://doi.org/10.1140/epjd/e2010-00103-y

    Article  ADS  Google Scholar 

  24. Santra, S., Muralidharan, S., Lichtman, M., Jiang, L., Monroe, C., Malinovsky, V.S.: Quantum repeaters based on two species trapped ions. New J. Phys. 21(7), 73002 (2019). https://doi.org/10.1088/1367-2630/ab2a45

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Siddhartha Santra.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Santra, S., Malinovsky, V.S. Probabilistic catalyzed entanglement concentration of qubit pairs. Quantum Inf Process 20, 206 (2021). https://doi.org/10.1007/s11128-021-03143-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11128-021-03143-8

Keywords

Navigation