Skip to main content
Log in

Necessary conditions on effective quantum entanglement catalysts

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

Quantum catalytic transformations play important roles in the transformation of quantum entangled states under local operations and classical communications (LOCC). The key problems in catalytic transformations are the existence and the bounds on the catalytic states. We present the necessary conditions of catalytic states based on a set of points given by the Schmidt coefficients of the entangled source and target states. The lower bounds on the dimensions of the catalytic states are also investigated. Moreover, we give a detailed protocol of quantum mixed state transformation under entanglement-assisted LOCC.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Wakakuwa, E., Soeda, A., Murao, M.: Complexity of causal order structure in distributed quantum information processing: more rounds of classical communication reduce entanglement cost. Phys. Rev. Lett. 122, 190502 (2019)

    Article  ADS  Google Scholar 

  2. Chitambar, E., Gour, G.: Quantum resource theories. Rev. Mod. Phys. 91, 025001 (2019)

    Article  MathSciNet  ADS  Google Scholar 

  3. Berta, M., Brandão, F.G.S.L., Majenz, C., Wilde, M.M.: Deconstruction and conditional erasure of quantum correlations. Phys. Rev. A 98, 042320 (2018)

    Article  ADS  Google Scholar 

  4. Berta, M., Majenz, C.: Disentanglement cost of quantum states. Phys. Rev. Lett. 121, 190503 (2018)

    Article  ADS  Google Scholar 

  5. Horodecki, R., Horodecki, P., Horodecki, M., Horodecki, K.: Quantum entanglement. Rev. Mod. Phys. 81, 865–942 (2009)

    Article  MathSciNet  ADS  Google Scholar 

  6. Bennett, C.H., Brassard, G.: Quantum cryptography: public key distribution and coin tossing. In: Proceedings of the IEEE International Conference on Computers, Systems and Signal Processing IEEE Computer Society, pp. 175–179 (1984)

  7. Bandyopadhyay, S., Ghosh, S., Roychowdhury, V.: Non-full-rank bound entangled states satisfying the range criterion. Phys. Rev. A 71, 012316 (2005)

    Article  ADS  Google Scholar 

  8. Bennett, C.H., Brassard, G., Crépeau, C., Jozsa, R., Peres, A., Wootters, W.K.: Teleporting an unknown quantum state via dual classical and Einstein–Podolsky–Rosen channels. Phys. Rev. Lett. 70, 1895–1899 (1993)

    Article  MathSciNet  ADS  Google Scholar 

  9. Raussendorf, R., Briegel, H.J.: A one-way quantum computer. Phys. Rev. Lett. 86, 5188–5191 (2001)

    Article  ADS  Google Scholar 

  10. Deutsch, D., Penrose, R.: Quantum theory, the Church–Turing principle and the universal quantum computer. Proc. R. Soc. Lond. A. Math. Phys. Sci. 400(1818), 97–117 (1985)

    MathSciNet  MATH  ADS  Google Scholar 

  11. Nielsen, M.A.: Conditions for a class of entanglement transformations. Phys. Rev. Lett. 83, 436–439 (1999)

    Article  ADS  Google Scholar 

  12. Marshall, A.W., Olkin, I., Arnold, B.C.: Inequalities: Theory of Majorization and Its Applications. Springer, New York (1979)

    MATH  Google Scholar 

  13. Alberti, P., Uhlmann, A.: Stochasticity and Partial Order: Doubly Stochastic Maps and Unitary Mixing. Mathematics and its Applications, vol. 9. VEB Deutscher Verlag der Wissenschaften. D. Reidel Publishing Company, Berlin (1982)

  14. Jonathan, D., Plenio, M.B.: Entanglement-assisted local manipulation of pure quantum states. Phys. Rev. Lett. 83, 3566–3569 (1999)

    Article  MathSciNet  ADS  Google Scholar 

  15. Turgut, S.: Catalytic transformations for bipartite pure states. J. Phys. A Math. Theor. 40(40), 12185–12212 (2007)

    Article  MathSciNet  ADS  Google Scholar 

  16. Sun, X., Duan, R., Ying, M.: The existence of quantum entanglement catalysts. IEEE Trans. Inf. Theory 51(1), 75–80 (2005)

    Article  MathSciNet  Google Scholar 

  17. Bandyopadhyay, S., Roychowdhury, V.: Efficient entanglement-assisted transformation for bipartite pure states. Phys. Rev. A 65, 042306 (2002)

    Article  ADS  Google Scholar 

  18. Sanders, Y.R., Gour, G.: Necessary conditions for entanglement catalysts. Phys. Rev. A 79, 054302 (2009)

    Article  ADS  Google Scholar 

  19. Daftuar, S., Klimesh, M.: Mathematical structure of entanglement catalysis. Phys. Rev. A 64, 042314 (2001)

    Article  MathSciNet  ADS  Google Scholar 

  20. Duan, R., Feng, Y., Ying, M.: When catalysis is useful for probabilistic entanglement transformation. Phys. Rev. A 69, 062310 (2004)

    Article  ADS  Google Scholar 

  21. Dam, W.V., Hayden, P.: Universal entanglement transformations without communication. Phys. Rev. A 67, 060302 (2003)

    Article  MathSciNet  Google Scholar 

  22. Eisert, J., Wilkens, M.: Catalysis of entanglement manipulation for mixed states. Phys. Rev. Lett. 85, 437 (2000)

    Article  ADS  Google Scholar 

  23. Grabowecky, M., Gour, G.: Bounds on entanglement catalysts. Phys. Rev. A 99, 052348 (2019)

    Article  ADS  Google Scholar 

  24. Guifré, V.: Entanglement of pure states for a single copy. Phys. Rev. Lett. 83, 1046–1049 (1999)

    Article  Google Scholar 

  25. Horodecki, M., Oppenheim, J., Sparaciari, C.: Extremal distributions under approximate majorization. J. Phys. A Math. Theor. 51, 305301 (2018)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

YMG and SMF acknowledge the support from NSF of China under Grant No. 12075159, Beijing Natural Science Foundation (Z190005), Academy for Multidisciplinary Studies, Capital Normal University, Shenzhen Institute for Quantum Science and Engineering, Southern University of Science and Technology (No. SIQSE202001), and the Academician Innovation Platform of Hainan Province. YS, MYH, LJZ and LC were supported by the NNSF of China (Grant Nos. 11871089 and 11947241) and the Fundamental Research Funds for the Central Universities (Grant Nos. KG12080401 and ZG216S1902).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shao-Ming Fei.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

1.1 A. Proof of Proposition 1

Proof

If the conclusion is not true, one would have \(q_1r_{s+1}\le q_lr_s\), \(q_{l+1}r_s\le q_dr_{s-1}\) or \(q_1r_{s+1}\le q_dr_{s-1}\), which imply that the largest \(d(s-1)+l\) elements of \({\mathbf {q}} \otimes {\mathbf {r}}\) are \(q_1r_1,\ldots ,q_dr_1\), \(q_1r_2,\ldots ,q_dr_2\), \(\ldots \), \(q_1r_s,\ldots ,q_lr_s\). The summation of these largest \(d(s-1)+l\) elements of \({\mathbf {q}} \otimes {\mathbf {r}}\) gives

$$\begin{aligned} \sum _{ i = 1 }^{d(s-1)+l}( {\mathbf {q}} \otimes {\mathbf {r}} ) _ { i }&=\sum _{ i = 1}^d\sum _{j=1}^{s-1}q_ir_j+\sum _{t=1}^lq_tr_s\\&=\sum _{ i = 1 }^{s-1}r_i+r_s\sum _{j= 1}^lq_j. \end{aligned}$$

Meanwhile, the largest \(d(s-1)+l\) elements of \({\mathbf {p}} \otimes {\mathbf {r}}\) are not less than the sum of the terms \(p_1r_1,\ldots ,p_dr_1\), \(p_1r_2,\ldots ,p_dr_2\), \(\ldots \), \(p_1r_s,\ldots ,p_lr_s\),

$$\begin{aligned} \sum _{ i = 1 }^{d(s-1)+l}( {\mathbf {p}} \otimes {\mathbf {r}} ) _ { i } ^ { \downarrow }&\ge \sum _{ i = 1}^d\sum _{j=1}^{s-1}p_ir_j+\sum _{t=1}^lp_tr_s\\&=\sum _{ i = 1 }^{s-1}r_i+r_s\sum _{j= 1}^lp_j. \end{aligned}$$

On the other hand, since \(l\in {\mathcal {L}}\) and \(\sum _{j= 1}^lp_j >\sum _{j= 1}^lq_j \), we have

$$\begin{aligned} \sum _{ i = 1 }^{d(s-1)+l}( {\mathbf {p}} \otimes {\mathbf {r}} ) _ { i } ^ { \downarrow }\geqslant&\sum _{ i = 1 }^{s-1}r_i+r_s\sum _{j= 1}^lp_j \\ >&\sum _{ i = 1 }^{s-1}r_i+r_s\sum _{j= 1}^lq_j\\ =&\sum _{ i = 1 }^{d(s-1)+l}( {\mathbf {q}} \otimes {\mathbf {r}} ) _ { i } ^ { \downarrow } \end{aligned}$$

for any \(s=2,3,\ldots ,k-1\), which contradicts the assumption that \({\mathbf {p}} \otimes {\mathbf {r}} \prec {\mathbf {q}} \otimes {\mathbf {r}}\).

Next we prove the first inequality in (6). Since \(l\in {\mathcal {D}}_1\), we have \(p_1+\cdots +p_l>q_1+\cdots +q_l\) and \(p_1+\cdots +p_{l+1}\le q_1+\cdots +q_{l+1}\), which give rise to \(p_{l+1}<q_{l+1}\). Taking into account \(p_d>q_d\), we have \(\frac{p_d}{p_{l+1}}>\frac{q_d}{q_{l+1}}\) as \({\mathbf {p}}\) and \({\mathbf {q}}\) are solvable incomparable.

We use proof by contradiction. If \(\frac{q_d}{q_{l+1}}\ge \frac{r_k}{r_{k-1}}\), i.e., \(q_dr_{k-1}\ge q_{l+1}r_k\), then the smallest \(d-l\) elements of \({\mathbf {q}} \otimes {\mathbf {r}}\) are \(q_{l+1}r_k,q_{l+2}r_k,\ldots ,q_dr_k\). Moreover, the sum of the smallest \(d-l\) elements of \({\mathbf {p}} \otimes {\mathbf {r}}\) is not larger than the sum of \(p_{l+1}r_k,p_{l+2}r_k,\ldots ,p_dr_k\). Because of \(l\in {\mathcal {L}}\), we get \(p_{l+1}+\cdots +p_d<q_{l+1}+\cdots +q_d\). Therefore, we have the following relation,

$$\begin{aligned}&\sum _ { i = dk-d+l+1 } ^ { dk } ( {\mathbf {p}} \otimes {\mathbf {r}} ) _ { i } ^ { \downarrow }\leqslant \sum _{ i = l+1 }^dp_ir_k\\&\quad <\sum _{ i = l+1 }^dq_ir_k= \sum _ { i = dk-d+l+1 } ^ { dk} ( {\mathbf {q}} \otimes {\mathbf {r}} ) _ { i } ^ { \downarrow }, \end{aligned}$$

which contradicts the assumption that \({\mathbf {p}} \otimes {\mathbf {r}} \prec {\mathbf {q}} \otimes {\mathbf {r}}\), and proves the first inequality in (6).

Concerning the second inequality in (6), we use again the proof by contradiction. If \(\frac{q_1}{q_l}\le \frac{r_1}{r_2}\), the largest l elements of \({\mathbf {q}} \otimes {\mathbf {r}}\) are \(q_1r_1,q_2r_1,\ldots ,q_lr_1\). Since the sum of the largest l elements of \({\mathbf {p}} \otimes {\mathbf {r}}\) is not less than the sum of \(p_1r_1,p_2r_1,\ldots ,p_lr_1\) for \(l\in {\mathcal {L}}\), we have \(p_1+\cdots +p_l>q_1+\cdots +q_l\). Then we have the relation,

$$\begin{aligned}&\sum _ { i = 1 } ^l( {\mathbf {p}} \otimes {\mathbf {r}} ) _ { i } ^ { \downarrow }\geqslant \sum _{ i = 1 }^lp_ir_1\\&\quad >\sum _{ i = 1 }^lq_ir_1= \sum _ { i = 1} ^ l ( {\mathbf {q}} \otimes {\mathbf {r}} ) _ { i } ^ { \downarrow }, \end{aligned}$$

which contradicts the assumption that \({\mathbf {p}} \otimes {\mathbf {r}} \prec {\mathbf {q}} \otimes {\mathbf {r}}\) and proves the second inequality in (6). \(\square \)

1.2 B. A remark on the relationship between Proposition 1 and Theorem 1 in [23]

In the proof of Theorem 1 in [23], it is mentioned that “\(q_{m} r_{v^{\prime }} \geqslant q_{1} r_{v^{\prime }+1}\) implies that the first \(\left( v^{\prime }-1\right) d+m\) elements of \(({\mathbf {q}} \otimes {\mathbf {r}})^{\downarrow }\) consist of \(q_{x} r_{y}\), \(\forall x \in \{1,2, \ldots , d\}\) and \(\forall y \in \left\{ 1,2, \ldots , v^{\prime }-1\right\} \), along with \(q_{x^{\prime }} r_{v^{\prime }}\) \(\forall x^{\prime } \in \{1,2, \ldots , m\}\).” Generally this could be not true because some elements of \(q_{x} r_{y}\), \(x \in \{1,2, \ldots , d\}\), \(y \in \left\{ 1,2, \ldots , v^{\prime }-1\right\} \), along with \(q_{x^{\prime }} r_{v^{\prime }}\) \(\forall x^{\prime } \in \{1,2, \ldots , m\}\) might be less than some elements of \(q_{x^{\prime }} r_{v^{\prime }}\), \(x^{\prime } \in \{1,2, \ldots , d\}\), \(y^{\prime } \in \{ v^{\prime }+1, \ldots , k\}\), along with \(q_{x^{\prime }} r_{v^{\prime }}\) \(\forall x^{\prime } \in \{m+1, \ldots , d\}\), when \( q_{d} r_{v^{\prime }-1} < q_{m+1} r_{v^{\prime }}\) or \( q_{d} r_{v^{\prime }-1} < q_{1} r_{v^{\prime }+1}\). This implies that the first \(\left( v^{\prime }-1\right) d+m\) elements of \(({\mathbf {q}} \otimes {\mathbf {r}})^{\downarrow }\) do not consist of \(q_{x} r_{y}\), \(\forall x \in \{1,2, \ldots , d\}\) and \(\forall y \in \left\{ 1,2, \ldots , v^{\prime }-1\right\} \), along with \(q_{x^{\prime }} r_{v^{\prime }}\) \(\forall x^{\prime } \in \{1,2, \ldots , m\}\).

From Proposition 1, we have that the first \(\left( s-1\right) d+l\) elements of \(({\mathbf {q}} \otimes {\mathbf {r}})^{\downarrow }\) consist of \(q_{x} r_{y}\), \(\forall x \in \{1,2, \ldots , d\}\) and \(\forall y \in \left\{ 1,2, \ldots , s-1\right\} \), along with \(q_{x^{\prime }} r_{s}\) \(\forall x^{\prime } \in \{1,2, \ldots , l\}\) when \(q_{l} r_{s} \geqslant q_{1} r_{s+1}\), \(q_{d} r_{s-1} \geqslant q_{l+1} r_{s}\) and \(q_{d} r_{s-1} \geqslant q_{1} r_{s+1}\), which is true for \(\forall l \in \mathcal {L}\). Hence, Proposition 1 fills such loopholes in Theorem 1 in [23] and also gives finer characterizations of \({\mathbf {r}}\) by increasing the number of constraints on \({\mathbf {r}}\).

1.3 C. Proof of corollary 2

Proof

By the definition of \(M_{\mathcal{L}}\), we have:

$$\begin{aligned} \begin{aligned} \sum _{i=M_{\mathcal{L}}+1}^{d}p_i\leqslant \sum _{i=M_{\mathcal{L}}+1}^{d}q_i, \\ \sum _{i=M_{\mathcal{L}}+2}^{d}p_i>\sum _{i=M_{\mathcal{L}}+2}^{d}q_i. \end{aligned} \end{aligned}$$

This implies that \(p_{M_{\mathcal{L}}+1}<q_{M_{\mathcal{L}}+1}\). Combining with \(p_d\geqslant q_d\), we get

$$\begin{aligned} \frac{p_d}{p_{M_{\mathcal{L}}+1}}>\frac{q_d}{q_{M_{\mathcal{L}}+1}}. \end{aligned}$$

If \(\frac{q_d}{q_{M_{\mathcal{L}}+1}}\geqslant \frac{r_k}{r_{k-1}}\), we have the following partial order the vector \({\mathbf {q}} \otimes {\mathbf {r}}\),

$$\begin{aligned} q_dr_k\leqslant q_{d-1}r_k\leqslant \dots \leqslant q_{M_{\mathcal{L}}+1}r_k\leqslant q_dr_{k-1}. \end{aligned}$$
(12)

For \(\frac{p_d}{p_{M_{\mathcal{L}}+1}}>\frac{q_d}{q_{M_{\mathcal{L}}+1}}\), we have the following partial order the vector \({\mathbf {p}} \otimes {\mathbf {r}}\),

$$\begin{aligned} p_dr_k\leqslant p_{d-1}r_k\leqslant \dots \leqslant p_{M_{\mathcal{L}}+1}r_k\leqslant p_dr_{k-1} \end{aligned}$$
(13)

Combining (12) and (13), we have that the last \(d-M_{\mathcal{L}}\) elements of \(( {\mathbf {p}} \otimes {\mathbf {r}} ) ^ { \downarrow }\) and \(( {\mathbf {q}} \otimes {\mathbf {r}} ) ^ { \downarrow }\) are \(p_dr_k\), \(p_{d-1}r_k\), \(\dots \), \(p_{M_{\mathcal{L}}+1}r_k\) and \(q_dr_k\), \(q_{d-1}r_k\), \(\dots \), \(q_{M_{\mathcal{L}}+1}r_k\), respectively. Therefore, we have

$$\begin{aligned}&\sum _{i=dk-d+M_{\mathcal{L}}+1}^{dk}( {\mathbf {p}} \otimes {\mathbf {r}} )_i ^ {\downarrow }=r_k\sum _{i=M_{\mathcal{L}}+1}^{d}p_i\\&\quad \leqslant r_k\sum _{i=M_{\mathcal{L}}+1}^{d}q_i=\sum _{i=dk-d+M_{\mathcal{L}}+1}^{dk}( {\mathbf {q}} \otimes {\mathbf {r}} )_i ^ {\downarrow }, \end{aligned}$$

which implies that

$$\begin{aligned} \sum _{i=1}^{dk-d+M_{\mathcal{L}}}( {\mathbf {p}} \otimes {\mathbf {r}} )_i ^ {\downarrow }> \sum _{i=1}^{dk-d+M_{\mathcal{L}}}( {\mathbf {p}} \otimes {\mathbf {r}} )_i ^ {\downarrow }, \end{aligned}$$

and contradicts the assumption that \({\mathbf {p}} \otimes {\mathbf {r}} \prec {\mathbf {q}} \otimes {\mathbf {r}}\). \(\square \)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guo, YM., Shen, Y., Zhao, LJ. et al. Necessary conditions on effective quantum entanglement catalysts. Quantum Inf Process 20, 356 (2021). https://doi.org/10.1007/s11128-021-03293-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11128-021-03293-9

Keywords

Navigation