Skip to main content
Log in

Se-doped NH2-functionalized graphene quantum dot for single-photon emission at free-space quantum communication wavelength

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

In this paper, a brand new structure based on graphene quantum dots (GQDs) is introduced which is doped with two selenium atoms and functionalized with amino groups simultaneously. The purpose of the structure is to achieve a photoluminescence (PL) spectrum which peaks at free-space communication wavelengths range. Hence, using density functional theory (DFT), time-dependent DFT (TD-DFT) calculations and analyzing charge density distribution, the density and the energy of molecular orbitals and dominant electronic transitions, the energy and the wavelength for dominant excited states and also the density of states (DOS) diagram for pure GQD, selenium-doped GQD and simultaneously doped and functionalized GQD is discussed. PL spectrum of the device is obtained for each three structures. Studying precisely all the mechanisms which affect PL spectrum, it is understood that selenium doping with graphitic configuration by inducing an electrical dipole moment to the structure leads to increasing charge density in π and π* orbitals at doped regions. Moreover, by decreasing the gap between dominant transitions, it shifts the PL spectrum peak from 484.4 to 520 nm. After functionalizing the doped structure with NH2 groups with a configuration which is close to the structure that will be obtained at real synthesis conditions and also analyzing the dominant states and DOS diagram, it can be figured out that not only a large electrical dipole moment is induced, but also some new inter-band states are formed within the band gap and these new states improve the interactions between charge carrier transitions in the structure just like the inter band trap levels in optical electronics. In addition, they increase the hybridization between the orbitals and also decrease the gap between dominant transitions and thus the PL spectrum peak will shift to 760 nm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19

Similar content being viewed by others

References

  1. Bouchard, F., Sit, A., Hufnagel, F., Abbas, A., Zhang, Y., Heshami, K., et al.: Quantum cryptography with twisted photons through an outdoor underwater channel. Opt. Express 26, 22563–22573 (2018)

    Article  ADS  Google Scholar 

  2. Liu, H., Ma, H., Wei, K., Yang, X., Qu, W., Dou, T., et al.: Multi-group dynamic quantum secret sharing with single photons. Phys. Lett. A 380, 2349–2353 (2016)

    Article  ADS  Google Scholar 

  3. Ryabtsev, I., Tretyakov, D., Kolyako, A., Pleshkov, A., Entin, V., Neizvestny, I.: Experimental quantum cryptography with single photons. Bull. Russ. Acad. Sci. Phys. 81, 1493–1496 (2017)

    Article  Google Scholar 

  4. Hu, J.Y., Yu, B., Jing, M.Y., Xiao, L.T., Jia, S.T., Qin, G.Q., et al.: Experimental quantum secure direct communication with single photons. Light Sci. Appl. 5, e16144 (2016)

    Article  Google Scholar 

  5. Walker, T., Miyanishi, K., Ikuta, R., Takahashi, H., Kashanian, S.V., Tsujimoto, Y., et al.: Long-distance single photon transmission from a trapped ion via quantum frequency conversion. Phys. Rev. Lett. 120, 203601 (2018)

    Article  ADS  Google Scholar 

  6. Yang, J., Nawrath, C., Keil, R., Joos, R., Zhang, X., Höfer, B., et al.: Quantum dot-based broadband optical antenna for efficient extraction of single photons in the telecom O-band. Opt. Express 28, 19457–19468 (2020)

    Article  ADS  Google Scholar 

  7. Zeuner, K.D., Paul, M., Lettner, T., Reuterskiöld Hedlund, C., Schweickert, L., Steinhauer, S., et al.: A stable wavelength-tunable triggered source of single photons and cascaded photon pairs at the telecom C-band. Appl. Phys. Lett. 112, 173102 (2018)

    Article  ADS  Google Scholar 

  8. Kim, J.-H., Cai, T., Richardson, C.J., Leavitt, R.P., Waks, E.: Two-photon interference from a bright single-photon source at telecom wavelengths. Optica 3, 577–584 (2016)

    Article  ADS  Google Scholar 

  9. MohammadNejad, S., KhodadadKashi, A., Arab, H.: Single-and two-qubit universal quantum gates in photonic Ti: LiNbO3 circuits. Optik 182, 907–921 (2019)

    Article  ADS  Google Scholar 

  10. MohammadNejad, S., KhodadadKashi, A.: CNOT-based quantum swapping of polarization and modal encoded qubits in photonic Ti: LiNbO3 channel waveguides. Opt. Quant. Electron. 51, 301 (2019)

    Article  Google Scholar 

  11. MohammadNejad, S., KhodadadKashi, A.: Realization of quantum SWAP gate using photonic integrated passive and electro-optically active components. Fiber Integr. Opt. 38, 117–136 (2019)

    Article  ADS  Google Scholar 

  12. Babazadeh, A., Erhard, M., Wang, F., Malik, M., Nouroozi, R., Krenn, M., et al.: High-dimensional single-photon quantum gates: concepts and experiments. Phys. Rev. Lett. 119, 180510 (2017)

    Article  ADS  Google Scholar 

  13. X.-M. Hu, C. Zhang, B.-H. Liu, Y.-F. Huang, C.-F. Li, and G.-C. Guo, Experimental multi-level quantum teleportation, arXiv preprint, 2019.

  14. Llewellyn, D., Ding, Y., Faruque, I.I., Paesani, S., Bacco, D., Santagati, R., et al.: Chip-to-chip quantum teleportation and multi-photon entanglement in silicon. Nat. Phys. 16, 148–153 (2020)

    Article  Google Scholar 

  15. Reindl, M., Huber, D., Schimpf, C., da Silva, S.F.C., Rota, M.B., Huang, H., et al.: All-photonic quantum teleportation using on-demand solid-state quantum emitters. Sci. Adv. 4, eaau1255 (2018)

    Article  ADS  Google Scholar 

  16. Jeong, H., Bae, S., Choi, S.: Quantum teleportation between a single-rail single-photon qubit and a coherent-state qubit using hybrid entanglement under decoherence effects. Quantum Inf. Process. 15, 913–927 (2016)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  17. Lü, X.-Y., Zhu, G.-L., Zheng, L.-L., Wu, Y.: Entanglement and quantum superposition induced by a single photon. Phys. Rev. A 97, 033807 (2018)

    Article  ADS  Google Scholar 

  18. Müller, M., Vural, H., Schneider, C., Rastelli, A., Schmidt, O., Höfling, S., et al.: Quantum-dot single-photon sources for entanglement enhanced interferometry. Phys. Rev. Lett. 118, 257402 (2017)

    Article  ADS  Google Scholar 

  19. Senellart, P., Solomon, G., White, A.: High-performance semiconductor quantum-dot single-photon sources. Nat. Nanotechnol. 12, 1026 (2017)

    Article  ADS  Google Scholar 

  20. Chen, X., Lu, X., Dubey, S., Yao, Q., Liu, S., Wang, X., et al.: Entanglement of single-photons and chiral phonons in atomically thin WSe 2. Nat. Phys. 15, 221–227 (2019)

    Article  Google Scholar 

  21. Fan, L., Zou, C.-L., Poot, M., Cheng, R., Guo, X., Han, X., et al.: Integrated optomechanical single-photon frequency shifter. Nat. Photonics 10, 766–770 (2016)

    Article  ADS  Google Scholar 

  22. Zheng, L.-L., Yin, T.-S., Bin, Q., Lü, X.-Y., Wu, Y.: Single-photon-induced phonon blockade in a hybrid spin-optomechanical system. Phys. Rev. A 99, 013804 (2019)

    Article  ADS  Google Scholar 

  23. Børkje, K.: Critical quantum fluctuations and photon antibunching in optomechanical systems with large single-photon cooperativity. Phys. Rev. A 101, 053833 (2020)

    Article  ADS  Google Scholar 

  24. Li, X., Zhang, W.-Z., Xiong, B., Zhou, L.: Single-photon multi-ports router based on the coupled cavity optomechanical system. Sci. Rep. 6, 1–8 (2016)

    Article  Google Scholar 

  25. Arab, H., MohammadNejad, S., KhodadadKashi, A., Ahadzadeh, S.: Recent advances in nanowire quantum dot (NWQD) single-photon emitters. Quantum Inf. Process. 19, 44 (2020)

    Article  ADS  Google Scholar 

  26. Molotkov, S., Potapova, T.: Faint laser pulses versus a single-photon source in free space quantum cryptography. Laser Phys. Lett. 13, 035201 (2016)

    Article  ADS  Google Scholar 

  27. Lukishova, S.G., Bissell, L.J.: Nanophotonic advances for room-temperature single-photon sources. In: Boyd, R.W., Lukishova, S.G., Zadkov, V.N. (eds.) Quantum photonics pioneering advances and emerging applications, pp. 103–178. Springer (2019)

    Chapter  Google Scholar 

  28. Qi, Z., Du, C., Qin, X., Wang, J., Wei, Z., Zhang, Z.: Improvement of the safe transmission distance via optimization of the photon number distribution for the faint optical pulse in practical quantum key distribution systems. Eur. Phys. J. D 73, 161 (2019)

    Article  ADS  Google Scholar 

  29. Xiang, T., Li, Y., Zheng, Y., Chen, X.: Multiple-DWDM-channel heralded single-photon source based on a periodically poled lithium niobate waveguide. Opt. Express 25, 12493–12498 (2017)

    Article  ADS  Google Scholar 

  30. Gulati, G.K., Srivathsan, B., Chng, B., Cere, A., Matsukevich, D., Kurtsiefer, C.: Generation of an exponentially rising single-photon field from parametric conversion in atoms. Phys. Rev. A 90, 033819 (2014)

    Article  ADS  Google Scholar 

  31. Aspect, A., Grangier, P., Roger, G.: Experimental tests of realistic local theories via Bell’s theorem. Phys. Rev. Lett. 47, 460 (1981)

    Article  ADS  Google Scholar 

  32. Fedrizzi, A., Herbst, T., Poppe, A., Jennewein, T., Zeilinger, A.: A wavelength-tunable fiber-coupled source of narrowband entangled photons. Opt. Express 15, 15377–15386 (2007)

    Article  ADS  Google Scholar 

  33. Zhong, T., Hu, X., Wong, F.N., Berggren, K.K., Roberts, T.D., Battle, P.: High-quality fiber-optic polarization entanglement distribution at 1.3 μm telecom wavelength. Opt. Lett. 35, 1392–1394 (2010)

    Article  ADS  Google Scholar 

  34. Takesue, H., Fukuda, H., Tsuchizawa, T., Watanable, T., Yamada, K., Tokura, Y., et al.: Entanglement generation using silicon wire waveguide. Opt. Spectrosc. 108, 160–164 (2010)

    Article  ADS  Google Scholar 

  35. Lukishova, S.G., Schmid, A.W., McNamara, A.J., Boyd, R.W., Stroud, C.R.: Room temperature single-photon source: single-dye molecule fluorescence in liquid crystal host. IEEE J. Sel. Top. Quantum Electron. 9, 1512–1518 (2003)

    Article  ADS  Google Scholar 

  36. Alléaume, R., Treussart, F., Courty, J.-M., Roch, J.-F.: Photon statistics characterization of a single-photon source. New J. Phys. 6, 85 (2004)

    Article  ADS  Google Scholar 

  37. Lukishova, S.G., Schmid, A.W., Supranowitz, C.M., Lippa, N., McNamara, A.J., Boyd, R.W., et al.: Dye-doped cholesteric-liquid-crystal room-temperature single-photon source. J. Modern Opt. 51, 1535–1547 (2004)

    Article  ADS  Google Scholar 

  38. Marseglia, L., Saha, K., Ajoy, A., Schröder, T., Englund, D., Jelezko, F., et al.: Bright nanowire single photon source based on SiV centers in diamond. Opt. Express 26, 80–89 (2018)

    Article  ADS  Google Scholar 

  39. Khramtsov, I.A., Agio, M., Fedyanin, D.Y.: Dynamics of single-photon emission from electrically pumped color centers. Phys. Rev. Appl. 8, 024031 (2017)

    Article  ADS  Google Scholar 

  40. Rodiek, B., Lopez, M., Hofer, H., Porrovecchio, G., Smid, M., Chu, X.-L., et al.: Experimental realization of an absolute single-photon source based on a single nitrogen vacancy center in a nanodiamond. Optica 4, 71–76 (2017)

    Article  ADS  Google Scholar 

  41. Benedikter, J., Kaupp, H., Hümmer, T., Liang, Y., Bommer, A., Becher, C., et al.: Cavity-enhanced single-photon source based on the silicon-vacancy center in diamond. Phys. Rev. Appl. 7, 024031 (2017)

    Article  ADS  Google Scholar 

  42. Neu, E., Steinmetz, D., Riedrich-Möller, J., Gsell, S., Fischer, M., Schreck, M., et al.: Single photon emission from silicon-vacancy colour centres in chemical vapour deposition nano-diamonds on iridium. New J. Phys. 13, 025012 (2011)

    Article  ADS  Google Scholar 

  43. Schröder, T., Gädeke, F., Banholzer, M.J., Benson, O.: Ultrabright and efficient single-photon generation based on nitrogen-vacancy centres in nanodiamonds on a solid immersion lens. New J. Phys. 13, 055017 (2011)

    Article  ADS  Google Scholar 

  44. Walker, T., Kashanian, S.V., Ward, T., Keller, M.: Improving the indistinguishability of single photons from an ion-cavity system. Phys. Rev. A 102, 032616 (2020)

    Article  ADS  Google Scholar 

  45. Ballance, T., Meyer, H., Kobel, P., Ott, K., Reichel, J., Köhl, M.: Cavity-induced backaction in Purcell-enhanced photon emission of a single ion in an ultraviolet fiber cavity. Phys. Rev. A 95, 033812 (2017)

    Article  ADS  Google Scholar 

  46. Dibos, A., Raha, M., Phenicie, C., Thompson, J.D.: Atomic source of single photons in the telecom band. Phys. Rev. Lett. 120, 243601 (2018)

    Article  ADS  Google Scholar 

  47. Wang, J., Zhou, Y., Wang, Z., Rasmita, A., Yang, J., Li, X., et al.: Bright room temperature single photon source at telecom range in cubic silicon carbide. Nat. Commun. 9, 1–6 (2018)

    ADS  Google Scholar 

  48. Grosso, G., Moon, H., Lienhard, B., Ali, S., Efetov, D.K., Furchi, M.M., et al.: Tunable and high-purity room temperature single-photon emission from atomic defects in hexagonal boron nitride. Nat. Commun. 8, 1–8 (2017)

    Article  Google Scholar 

  49. Martínez, L., Pelini, T., Waselowski, V., Maze, J., Gil, B., Cassabois, G., et al.: Efficient single photon emission from a high-purity hexagonal boron nitride crystal. Phys. Rev. B 94, 121405 (2016)

    Article  ADS  Google Scholar 

  50. Katsumi, R., Ota, Y., Osada, A., Yamaguchi, T., Tajiri, T., Kakuda, M., et al.: Quantum-dot single-photon source on a CMOS silicon photonic chip integrated using transfer printing. APL Photonics 4, 036105 (2019)

    Article  ADS  Google Scholar 

  51. Gerhardt, S., Iles-Smith, J., McCutcheon, D.P., He, Y.-M., Unsleber, S., Betzold, S., et al.: Intrinsic and environmental effects on the interference properties of a high-performance quantum dot single-photon source. Phys. Rev. B 97, 195432 (2018)

    Article  ADS  Google Scholar 

  52. Duan, Z.-C., Li, J.-P., Qin, J., Yu, Y., Huo, Y.-H., Höfling, S., et al.: Proof-of-principle demonstration of compiled Shor’s algorithm using a quantum dot single-photon source. Opt. Express 28, 18917–18930 (2020)

    Article  ADS  Google Scholar 

  53. Hanschke, L., Fischer, K.A., Appel, S., Lukin, D., Wierzbowski, J., Sun, S., et al.: "Quantum dot single-photon sources with ultra-low multi-photon probability. npj Quantum Inf. 4, 1–6 (2018)

    Article  Google Scholar 

  54. Zhao, S., Lavie, J., Rondin, L., Orcin-Chaix, L., Diederichs, C., Roussignol, P., et al.: Single photon emission from graphene quantum dots at room temperature. Nat. Commun. 9, 1–5 (2018)

    Article  Google Scholar 

  55. Montejo-Alvaro, F., Oliva, J., Herrera-Trejo, M., Hdz-García, H., Mtz-Enriquez, A.: DFT study of small gas molecules adsorbed on undoped and N-, Si-, B-, and Al-doped graphene quantum dots. Theoret. Chem. Acc. 138, 37 (2019)

    Article  Google Scholar 

  56. Mombrú, D., Romero, M., Faccio, R., Mombrú, Á.W.: Electronic and optical properties of sulfur and nitrogen doped graphene quantum dots: A theoretical study. Phys. E. 113, 130–136 (2019)

    Article  Google Scholar 

  57. Niu, X., Li, Y., Shu, H., Wang, J.: Revealing the underlying absorption and emission mechanism of nitrogen doped graphene quantum dots. Nanoscale 8, 19376–19382 (2016)

    Article  Google Scholar 

  58. Lee, J.H., Kwon, S.H., Kwon, S., Cho, M., Kim, K.H., Han, T.H., et al.: Tunable electronic properties of nitrogen and sulfur doped graphene: density functional theory approach. Nanomaterials 9, 268 (2019)

    Article  Google Scholar 

  59. Cui, P.: Effect of boron and nitrogen doping on carrier relaxation dynamics of graphene quantum dots. Mater. Res. Express 5, 065034 (2018)

    Article  ADS  Google Scholar 

  60. Yang, G., Wu, C., Luo, X., Liu, X., Gao, Y., Wu, P., et al.: Exploring the emissive states of heteroatom-doped graphene quantum dots. J. Phys. Chem. C 122, 6483–6492 (2018)

    Article  Google Scholar 

  61. Li, R.S., Yuan, B., Liu, J.H., Liu, M.L., Gao, P.F., Li, Y.F., et al.: Boron and nitrogen co-doped single-layered graphene quantum dots: a high-affinity platform for visualizing the dynamic invasion of HIV DNA into living cells through fluorescence resonance energy transfer. J. Mater. Chem. B 5, 8719–8724 (2017)

    Article  Google Scholar 

  62. Feng, J., Guo, Q., Liu, H., Chen, D., Tian, Z., Xia, F., et al.: Theoretical insights into tunable optical and electronic properties of graphene quantum dots through phosphorization. Carbon 155, 491–498 (2019)

    Article  Google Scholar 

  63. Xu, Y., Wang, S., Hou, X., Sun, Z., Jiang, Y., Dong, Z., et al.: Coal-derived nitrogen, phosphorus and sulfur co-doped graphene quantum dots: a promising ion fluorescent probe. Appl. Surf. Sci. 445, 519–526 (2018)

    Article  ADS  Google Scholar 

  64. Vatanparast, M., Shariatinia, Z.: Computational studies on the doped graphene quantum dots as potential carriers in drug delivery systems for isoniazid drug. Struct. Chem. 29, 1427–1448 (2018)

    Article  Google Scholar 

  65. Kadian, S., Manik, G., Kalkal, A., Singh, M., Chauhan, R.P.: Effect of sulfur doping on fluorescence and quantum yield of graphene quantum dots: an experimental and theoretical investigation. Nanotechnology 30, 435704 (2019)

    Article  Google Scholar 

  66. Li, X., Lau, S.P., Tang, L., Ji, R., Yang, P.: Multicolour light emission from chlorine-doped graphene quantum dots. J. Mater. Chem. C 1, 7308–7313 (2013)

    Article  Google Scholar 

  67. Feng, J., Dong, H., Yu, L., Dong, L.: The optical and electronic properties of graphene quantum dots with oxygen-containing groups: a density functional theory study. J. Mater. Chem. C 5, 5984–5993 (2017)

    Article  Google Scholar 

  68. Zhao, M., Yang, F., Xue, Y., Xiao, D., Guo, Y.: A time-dependent dft study of the absorption and fluorescence properties of graphene quantum dots. ChemPhysChem 15, 950–957 (2014)

    Article  Google Scholar 

  69. Mombrú, D., Romero, M., Faccio, R., A. l. W. Mombrú, : Electronic structure of edge-modified graphene quantum dots interacting with polyaniline vibrational and optical properties. J. Phys. Chem. C 121, 16576–16583 (2017)

    Article  Google Scholar 

  70. Mombrú, D., Romero, M., Faccio, R., Mombrú, A.W.: Curvature and vacancies in graphene quantum dots. Appl. Surf. Sci. 462, 540–548 (2018)

    Article  ADS  Google Scholar 

  71. Li, C., Yue, Y.: Fluorescence spectroscopy of graphene quantum dots: temperature effect at different excitation wavelengths. Nanotechnology 25, 435703 (2014)

    Article  ADS  Google Scholar 

  72. Lai, S., Jin, Y., Shi, L., Zhou, R., Zhou, Y., An, D.: Mechanisms behind excitation-and concentration-dependent multicolor photoluminescence in graphene quantum dots. Nanoscale 12, 591–601 (2020)

    Article  Google Scholar 

  73. Jang, M.-H., Song, S.H., Ha, H.D., Seo, T.S., Jeon, S., Cho, Y.-H.: Origin of extraordinary luminescence shift in graphene quantum dots with varying excitation energy: an experimental evidence of localized sp2 carbon subdomain. Carbon 118, 524–530 (2017)

    Article  Google Scholar 

  74. Lee, H.J., Jana, J., Ngo, Y.-L.T., Wang, L.L., Chung, J.S., Hur, S.H.: The effect of solvent polarity on emission properties of carbon dots and their uses in colorimetric sensors for water and humidity. Mater. Res. Bull. 119, 110564 (2019)

    Article  Google Scholar 

  75. Mei, S., Wei, X., Hu, Z., Wei, C., Su, D., Yang, D., et al.: Amphipathic carbon dots with solvent-dependent optical properties and sensing application. Opt. Mater. 89, 224–230 (2019)

    Article  ADS  Google Scholar 

  76. Gu, S., Hsieh, C.-T., Yuan, C.-Y., Gandomi, Y.A., Chang, J.-K., Fu, C.-C., et al.: Fluorescence of functionalized graphene quantum dots prepared from infrared-assisted pyrolysis of citric acid and urea. J. Luminescence 217, 116774 (2020)

    Article  ADS  Google Scholar 

  77. Hola, K., Bourlinos, A.B., Kozak, O., Berka, K., Siskova, K.M., Havrdova, M., et al.: Photoluminescence effects of graphitic core size and surface functional groups in carbon dots: COO− induced red-shift emission. Carbon 70, 279–286 (2014)

    Article  Google Scholar 

  78. Frisch M. J., and Nielsen A. B.: Gaussian 03 Programmer's Reference: Gaussian, 2003.

  79. Wu, J., Wang, P., Wang, F., Fang, Y.: Investigation of the microstructures of graphene quantum dots (GQDs) by surface-enhanced Raman spectroscopy. Nanomaterials 8, 864 (2018)

    Article  Google Scholar 

  80. Li, F., Li, T., Sun, C., Xia, J., Jiao, Y., Xu, H.: Selenium-doped carbon quantum dots for free-radical scavenging. Angew. Chem. Int. Ed. 56, 9910–9914 (2017)

    Article  Google Scholar 

  81. Hohenberg, P., Kohn, W.: Inhomogeneous electron gas. Phys. Rev. 136, B864 (1964)

    Article  ADS  MathSciNet  Google Scholar 

  82. Kohn, W., Sham, L.J.: Self-consistent equations including exchange and correlation effects. Phys. Rev. 140, A1133 (1965)

    Article  ADS  MathSciNet  Google Scholar 

  83. Yanai, T., Tew, D.P., Handy, N.C.: A new hybrid exchange–correlation functional using the Coulomb-attenuating method (CAM-B3LYP). Chem. Phys. Lett. 393, 51–57 (2004)

    Article  ADS  Google Scholar 

  84. Simchi, H., Esmaeilzadeh, M., Saani, M.H.: Ab initio study on the effects of MoO3 molecule on graphene clusters. Phys. E. 44, 1675–1679 (2012)

    Article  Google Scholar 

  85. Bauernschmitt, R., Ahlrichs, R.: Treatment of electronic excitations within the adiabatic approximation of time dependent density functional theory. Chem. Phys. Lett. 256, 454–464 (1996)

    Article  ADS  Google Scholar 

  86. Runge, E., Gross, E.K.: Density-functional theory for time-dependent systems. Phys. Rev. Lett. 52, 997 (1984)

    Article  ADS  Google Scholar 

  87. Hasan, M.T., Gonzalez-Rodriguez, R., Ryan, C., Pota, K., Green, K., Coffer, J.L., et al.: Nitrogen-doped graphene quantum dots: optical properties modification and photovoltaic applications. Nano Res. 12, 1041–1047 (2019)

    Article  Google Scholar 

  88. Feng, J., Dong, H., Pang, B., Shao, F., Zhang, C., Yu, L., et al.: Theoretical study on the optical and electronic properties of graphene quantum dots doped with heteroatoms. Phys. Chem. Chem. Phys. 20, 15244–15252 (2018)

    Article  Google Scholar 

  89. Faisal, S.N., Haque, E., Noorbehesht, N., Zhang, W., Harris, A.T., Church, T.L., et al.: Pyridinic and graphitic nitrogen-rich graphene for high-performance supercapacitors and metal-free bifunctional electrocatalysts for ORR and OER. RSC Adv. 7, 17950–17958 (2017)

    Article  ADS  Google Scholar 

  90. Jin, S.H., Kim, D.H., Jun, G.H., Hong, S.H., Jeon, S.: Tuning the photoluminescence of graphene quantum dots through the charge transfer effect of functional groups. ACS Nano 7, 1239–1245 (2013)

    Article  Google Scholar 

  91. Kumar, G.S., Roy, R., Sen, D., Ghorai, U.K., Thapa, R., Mazumder, N., et al.: Amino-functionalized graphene quantum dots: origin of tunable heterogeneous photoluminescence. Nanoscale 6, 3384–3391 (2014)

    Article  ADS  Google Scholar 

  92. Shayeganfar, F., Tabar, M.R.R., Simchi, A., Beheshtian, J.: Effects of functionalization and side defects on single-photon emission in boron nitride quantum dots. Phys. Rev. B 96, 165307 (2017)

    Article  ADS  Google Scholar 

  93. Yang, S., Sun, J., He, P., Deng, X., Wang, Z., Hu, C., et al.: Selenium doped graphene quantum dots as an ultrasensitive redox fluorescent switch. Chem. Mater. 27, 2004–2011 (2015)

    Article  Google Scholar 

  94. Walekar, L.S., Zheng, M., Zheng, L., Long, M.: Selenium and nitrogen co-doped carbon quantum dots as a fluorescent probe for perfluorooctanoic acid. Microchim. Acta 186, 1–9 (2019)

    Article  ADS  Google Scholar 

  95. Luo, W., Wang, Y., Lin, F., Liu, Y., Gu, R., Liu, W., et al.: Selenium-doped carbon quantum dots efficiently ameliorate secondary spinal cord injury via scavenging reactive oxygen species. Int. J. Nanomed. 15, 10113 (2020)

    Article  Google Scholar 

  96. Rosenkrans, Z.T., Sun, T., Jiang, D., Chen, W., Barnhart, T.E., Zhang, Z., et al.: Selenium-doped carbon quantum dots act as broad-spectrum antioxidants for acute kidney injury management. Adv. Sci. 7, 2000420 (2020)

    Article  Google Scholar 

  97. Yeh, H.-C., Lee, S.-W.: Photoluminescence enhancement of amino-functionalized graphene quantum dots in two-dimensional optical resonators. Opt. Express 25, 1444–1451 (2017)

    Article  ADS  Google Scholar 

  98. Van Tam, T., Choi, W.M.: One-pot synthesis of highly fluorescent amino-functionalized graphene quantum dots for effective detection of copper ions. Curr. Appl. Phys. 18, 1255–1260 (2018)

    Article  ADS  Google Scholar 

  99. Wang, R., Fan, H., Jiang, W., Ni, G., Qu, S.: Amino-functionalized graphene quantum dots prepared using high-softening point asphalt and their application in Fe3+ detection. Appl. Surf. Sci. 467, 446–455 (2019)

    Article  ADS  Google Scholar 

  100. Wang, S., Li, Z., Xu, X., Zhang, G., Li, Y., Peng, Q.: Amino-functionalized graphene quantum dots as cathode interlayer for efficient organic solar cells: quantum dot size on interfacial modification ability and photovoltaic performance. Adv. Mater. Interfaces 6, 1801480 (2019)

    Article  Google Scholar 

  101. Wu, E., Jacques, V., Zeng, H., Grangier, P., Treussart, F., Roch, J.-F.: Narrow-band single-photon emission in the near infrared for quantum key distribution. Opt. Express 14, 1296–1303 (2006)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Prof. Mohammad Reza Milani Hosseini and Dr Amin Khorsandi-Langol for their helpful comments and support during this research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shahram MohammadNejad.

Ethics declarations

Conflicts of interest

There are no conflicts of interest to declare.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 18 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Arab, H., MohammadNejad, S. & MohammadNejad, P. Se-doped NH2-functionalized graphene quantum dot for single-photon emission at free-space quantum communication wavelength. Quantum Inf Process 20, 184 (2021). https://doi.org/10.1007/s11128-021-03122-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11128-021-03122-z

Keywords

Navigation