Skip to main content
Log in

CNOT-based quantum swapping of polarization and modal encoded qubits in photonic Ti:LiNbO3 channel waveguides

  • Published:
Optical and Quantum Electronics Aims and scope Submit manuscript

Abstract

A photonic circuit aimed at implementing a CNOT-based quantum swapping of the modal and polarization qubits, is designed and simulated, using Ti:LiNbO3 indiffused channel waveguides. A few on-chip optical elements such as the polarization-sensitive odd-mode analyzers and combiners, along with the electrically controllable directional couplers and polarization converters, are incorporated within the circuit and together serve to realize the operation of a deterministic single-photon quantum swap gate. Entanglement generation is realized on-chip by means of two concurrent spontaneous parametric down-conversion processes in the twice periodically poled Ti:LiNbO3 waveguide, placed at the input section of the circuit. The constituent elements of the circuit are characterized separately using numerical beam propagation method in RSoft program package. Two poling periods of \(\varLambda_{1} = 11.762\,\upmu{\text{m}}\) and \(\varLambda_{2} = 23.667\,\upmu{\text{m}}\) are calculated for the dual periodically perturbed structure in the circuit. The directional couplers operate at \(V_{DC} = 31.6\) V. Maximum polarization conversion efficiency is achieved by applying a constant switching voltage of \(V_{EO} = 4.52\) V.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  • Andrianov, S. N., Moiseev, S. A.: Fast and robust two-and three-qubit swapping gates on multi-atomic ensembles in quantum electrodynamic cavity. Quantum Phys. 52, 13–21 (2011). arXiv:1103.3098

    Google Scholar 

  • Barenco, A., Bennett, C.H., Cleve, R., DiVincenzo, D.P., Margolus, N., Shor, P., Sleator, T., Smolin, J.A., Weinfurter, H.: Elementary gates for quantum computation. Phys. Rev. 52(5), 3457–3467 (1995)

    Article  ADS  MathSciNet  Google Scholar 

  • Barnett, S.: Quantum Information. Oxford University Press, Oxford (2009)

    MATH  Google Scholar 

  • Bechler, O., Borne, A., Rosenblum, S., Guendelman, G., Mor, O. E., Netser, M., Ohana, T., Aqua, Z., Drucker, N., Finkelstein, R., Lovsky, Y., Bruch, R., Gurovich, D., Shafir, E., Dayan, B.: Demonstration of a passive photon-atom swap gate. Quantum Phys. (2017). arXiv:1711.10974

  • Bechler, O., Borne, A., Rosenblum, S., Guendelman, G., Mor, O.E., Netser, M., Ohana, T., Aqua, Z., Drucker, N., Finkelstein, R.: A passive photon–atom qubit swap operation. Nat. Phys. 14(10), 996–1000 (2018)

    Article  Google Scholar 

  • Borne, A., Bechler, O., Rosenblum, S., Guendelman, G., Mor, O., Netzer, M., Gurovich, D., Ohana, T., Aqua, Z., Drucker, N.: Demonstration of Deterministic and Passive Photon–Atom SWAP Quantum Gate. Quantum Information and Measurement. Optical Society of America, Paris France (2017)

    Google Scholar 

  • Bozkurt, A.B., Kocaman, S.: Linear optical deterministic and reconfigurable SWAP gate (2019). arXiv:1901.10369

  • Chun-Lei, J., Mao-Fa, F., Yao-Hua, H.: Efficient scheme of quantum SWAP gate and multi-atom cluster state via cavity QED. Chin. Phys. 17(1), 190–193 (2008)

    Article  ADS  Google Scholar 

  • Fowler, A. G., Devitt, S. J., Hollenberg, L. C.: Implementation of Shor’s algorithm on a linear nearest neighbour qubit array (2004)

  • Gong, Y.-X., Xie, Z.-D., Xu, P., Yu, X.-Q., Xue, P., Zhu, S.-N.: Compact source of narrow-band counterpropagating polarization-entangled photon pairs using a single dual-periodically-poled crystal. Phys. Rev. 84(5), 053825 (2011)

    Article  Google Scholar 

  • Guo, X., Zou, C.-L., Schuck, C., Jung, H., Cheng, R., Tang, H.X.: Parametric down-conversion photon-pair source on a nanophotonic chip. Light Sci. Appl. 6(5), e16249 (2017)

    Article  Google Scholar 

  • Huang, C., Lin, C., Chen, Y., Huang, Y.: Electro-optic Ti: PPLN waveguide as efficient optical wavelength filter and polarization mode converter. Opt. Exp. 15(5), 2548–2554 (2007)

    Article  ADS  Google Scholar 

  • Huang, J., Kwek, L., Gong, J., Gao, W., Chong, Y., Ser, W., Liu, A.: Two-qubits controlled-unitary quantum gates for quantum computing by silicon photonic chip. In: 2017 Conference on Lasers and Electro-optics (CLEO). IEEE (2017)

  • Liang, L.: Realization of quantum SWAP gate between flying and stationary qubits. Phys. Rev. 72(2), 024303 (2005)

    Article  ADS  Google Scholar 

  • Lin, G.-W., Zou, X.-B., Ye, M.-Y., Lin, X.-M., Guo, G.-C.: Quantum SWAP gate in an optical cavity with an atomic cloud. Phys. Rev. A 77(6), 064301 (2008)

    Article  ADS  Google Scholar 

  • MohammadNejad, S., KhodadadKashi, A., Arab, H.: Single-and two-qubit universal quantum gates in photonic Ti: LiNbO3 circuits. Optik 182, 907–921 (2019)

    Article  ADS  Google Scholar 

  • Nielsen, M. A., Chuang, I.: Quantum Computation and Quantum Information, 10th edn. Cambridge University Press, Cambridge. ISBN: 1107002176/9781107002173 (2011)

  • Saha, S., Yohanes, S.S., Jun, D., Danner, A., Tsang, M.: Fabrication and characterization of optical devices on lithium niobate on insulator chips. Procedia Eng 140, 183–186 (2016)

    Article  Google Scholar 

  • Saleh, B.E., Teich, M.C.: Fundamentals of Photonics. Wiley, New York (2019)

    Google Scholar 

  • Saleh, M.F., Di Giuseppe, G., Saleh, B.E., Teich, M.C.: Photonic circuits for generating modal, spectral, and polarization entanglement. IEEE Photonics J. 2(5), 736–752 (2010a)

    Article  ADS  Google Scholar 

  • Saleh, M.F., Di Giuseppe, G., Saleh, B.E., Teich, M.C.: Modal and polarization qubits in Ti: LiNbO3 photonic circuits for a universal quantum logic gate. Opt. Exp. 18(19), 20475–20490 (2010b)

    Article  ADS  Google Scholar 

  • Schuppert, B.: Reduction of bend losses in Ti: LiNbO3 waveguides through MgO double diffusion. Electron. Lett. 23(15), 797–798 (1987)

    Article  Google Scholar 

  • Sharapova, P., Luo, K., Herrmann, H., Reichelt, M., Meier, T., Silberhorn, C.: Toolbox for the design of LiNbO3-based passive and active integrated quantum circuits. New J. Phys. 19(12), 123009 (2017)

    Article  ADS  Google Scholar 

  • Stárek, R., Miková, M., Straka, I., Dušek, M., Ježek, M., Fiurášek, J., Mičuda, M.: Experimental realization of SWAP operation on hyper-encoded qubits. Opt. Exp. 26(7), 8443–8452 (2018)

    Article  ADS  Google Scholar 

  • Taherkhani, M., Mohammadnejad, S.: Degenerate entangled photon pairs source based on PPLN waveguide for quantum computation. Opt. Quantum Electron. 45(11), 1167–1177 (2013)

    Article  Google Scholar 

  • Trenti, A., Mancinelli, M., Marchesini, A., Castellan, C., Ghulinyan, M., Pavesi, L.: Towards MIR SPDC generation in strained silicon waveguides. In: The European Conference on Lasers and Electro-Optics. Optical Society of America (2017)

  • Wang, H.-F., Wen, J.-J., Zhu, A.-D., Zhang, S., Yeon, K.-H.: Deterministic CNOT gate and entanglement swapping for photonic qubits using a quantum-dot spin in a double-sided optical microcavity. Phys. Lett. 377(40), 2870–2876 (2013)

    Article  MATH  Google Scholar 

  • Wang, S., Cheng, Q., Gong, Y., Xu, P., Sun, C., Li, L., Li, T., Zhu, S.N.: A 14 × 14 μm2 footprint polarization-encoded quantum controlled-NOT gate based on hybrid waveguide. Nat. Commun. 7, 11490 (2016)

    Article  ADS  Google Scholar 

  • Wilmott, C.M.: On swapping the states of two qudits. Int. J. Quantum Inf. 9(06), 1511–1517 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  • Wilmott, C.M., Wild, P.R.: On a generalized quantum SWAP gate. Int. J. Quantum Inf. 10(03), 1250034 (2012)

    Article  MATH  Google Scholar 

  • Wu, R., Wang, M., Xu, J., Qi, J., Chu, W., Fang, Z., Zhang, J., Zhou, J., Qiao, L., Chai, Z.: Long low-loss-litium niobate on insulator waveguides with sub-nanometer surface roughness. Nanomaterials 8(11), 910 (2018)

    Article  Google Scholar 

  • Zhang, Y., Agnew, M., Roger, T., Roux, F.S., Konrad, T., Faccio, D., Leach, J., Forbes, A.: Simultaneous entanglement swapping of multiple orbital angular momentum states of light. Nat. Commun. 8(1), 632 (2017)

    Article  ADS  Google Scholar 

  • Zhang, C.-L., Lu, M., Luo, C.-L., Liu, W.-W.: One-step implementation of a deterministic SWAP gate via a shortcut to adiabatic passage. Laser Phys. Lett. 16(2), 025203 (2019)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shahram MohammadNejad.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

MohammadNejad, S., KhodadadKashi, A. CNOT-based quantum swapping of polarization and modal encoded qubits in photonic Ti:LiNbO3 channel waveguides. Opt Quant Electron 51, 301 (2019). https://doi.org/10.1007/s11082-019-2011-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11082-019-2011-9

Keywords

Navigation