Skip to main content
Log in

Quantum entanglement for atoms coupling to fluctuating electromagnetic field in the cosmic string spacetime

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

We investigate entanglement dynamics for two atoms coupling with fluctuating electromagnetic field in the cosmic string spacetime. We calculate the entanglement for different conditions. It is found that the entanglement behaviors are dependent on vacuum fluctuation, spacetime topology, two-atom separation and atomic polarization orientation. After a long time of evolution, entanglement would vanish, which means entanglement affected by electromagnetic fluctuation cannot maintain for a long time. For different spacetime topologies, entanglement presents different behaviors dependent on various parameters. When deficit angle parameter \(\nu =1\) and atom–string distance is toward infinity, the results in flat spacetime are recovered. When atoms keep close to the string, entanglement can be improved; specially, when two atoms locate on the string and have no polarization of axial direction, atoms are not affected by the electromagnetic fluctuation and entanglement can remain unchanged. When two-atom separation is relatively large, entanglement exhibits oscillation behavior as atom–string distance varies. This indicates that the existence of string profoundly modifies on the vacuum fluctuation and atom–field interaction. In addition, when two-atom separation is small, entanglement gains better improvement. Many parameters and conditions provide us with greater freedom to control the entanglement behaviors. In principle, this is useful to sense the cosmic string spacetime topology structure and property and discriminate different kinds of spacetime.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Nilsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information. Cambridge University Press, Cambridge, UK (2000)

    Google Scholar 

  2. Horodecki, R., Horodecki, P., Horodecki, M., Horodecki, K.: Quantum entanglement. Rev. Mod. Phys. 81, 865 (2009)

    Article  ADS  MathSciNet  Google Scholar 

  3. Hu, J.W., Yu, H.W.: Entanglement dynamics for uniformly accelerated two-level atoms. Phys. Rev. A 91, 012327 (2015)

    Article  ADS  MathSciNet  Google Scholar 

  4. Yang, Y.Q., Hu, J.W., Yu, H.W.: Entanglement dynamics for uniformly accelerated two-level atoms coupled with electromagnetic vacuum fluctuations. Phys. Rev. A 94, 032337 (2016)

    Article  ADS  Google Scholar 

  5. Hu, J.W., Yu, H.W.: Quantum entanglement generation in de Sitter spacetime. Phys. Rev. D 88, 104003 (2013)

    Article  ADS  Google Scholar 

  6. Huang, Z.M., Tian, Z.H.: Dynamics of quantum entanglement in de Sitter spacetime and thermal Minkowski spacetime. Nucl. Phys. B 923, 458 (2017)

    Article  ADS  MathSciNet  Google Scholar 

  7. Copeland, E.J., Pogosian, L., Vachaspati, T.: Seeking string theory in the cosmos. Class. Quant. Grav. 28, 204009 (2011)

    Article  ADS  MathSciNet  Google Scholar 

  8. Hindmarsh, M.: Signals of inflationary models with cosmic strings. Prog. Theor. Phys. Suppl. 190, 197 (2011)

    Article  ADS  Google Scholar 

  9. Vilenkin, A.: Cosmic strings as gravitational lenses. Astrophys. J. 282, L51 (1984)

    Article  ADS  MathSciNet  Google Scholar 

  10. Gott, J.R.: Gravitational lensing effects of vacuum strings-exact solutions. Astrophys. J. 288, 422 (1985)

    Article  ADS  MathSciNet  Google Scholar 

  11. Ford, L.H., Vilenkin, A.: A gravitational analogue of the Aharonov-Bohm effect. J. Phys. A Math. Gen. 14, 2353 (1981)

    Article  ADS  MathSciNet  Google Scholar 

  12. Bezerra, V.B.: Gravitational analogs of the Aharonov-Bohm effect. J. Math. Phys. 30, 2895 (1989)

    Article  ADS  MathSciNet  Google Scholar 

  13. Cai, H., Yu, H., Zhou, W.: Spontaneous excitation of a static atom in a thermal bath in cosmic string spacetime. Phys. Rev. D 92, 084062 (2015)

    Article  ADS  Google Scholar 

  14. Zhou, W., Yu, H.: Spontaneous excitation of a uniformly accelerated atom in the cosmic string spacetime. Phys. Rev. D 93, 084028 (2016)

    Article  ADS  MathSciNet  Google Scholar 

  15. Cai, H., Ren, Z.: Radiative processes of two entangled atoms in cosmic string spacetime. Class. Quantum Grav. 35, 025016 (2018)

    Article  ADS  MathSciNet  Google Scholar 

  16. Bakke, K., Nascimento, J.R., Furtado, C.: Geometric phase for a neutral particle in the presence of a topological defect. Phys. Rev. D 78, 064012 (2008)

    Article  ADS  Google Scholar 

  17. Cai, H., Ren, Z.: Geometric phase for a static two-level atom in cosmic string spacetime. Class. Quantum Grav. 35, 105014 (2018)

    Article  ADS  MathSciNet  Google Scholar 

  18. Bezerra de Mello, E.R., Saharian, A.A., Kh Grigoryan, A.: Casimir effect for parallel metallic plates in cosmic string spacetime. J. Phys. A Math. Theor. 45, 374011 (2012)

    Article  MathSciNet  Google Scholar 

  19. Huang, Z.M.: Quantum entanglement of nontrivial spacetime topology. Eur. Phys. J. C 80, 131 (2020)

    Article  ADS  Google Scholar 

  20. He, P., et al.: Entanglement dynamics for static two-level atoms in cosmic string spacetime. Eur. Phys. J. C 80, 134 (2020)

    Article  ADS  Google Scholar 

  21. Gorini, V., Kossakowski, A., Surdarshan, E.C.G.: Completely positive dynamical semigroups of N-level systems. J. Math. Phys. 17, 821 (1976)

    Article  ADS  MathSciNet  Google Scholar 

  22. Lindblad, G.: On the generators of quantum dynamical semigroups. Commun. Math. Phys. 48, 119 (1976)

    Article  ADS  MathSciNet  Google Scholar 

  23. Breuer, H.-P., Petruccione, F.: The Theory of Open Quantum Systems. Oxford University Press, Oxford (2002)

    MATH  Google Scholar 

  24. Wootters, W.K.: Entanglement of formation of an arbitrary state of two qubits. Phys. Rev. Lett. 80, 2245 (1998)

    Article  ADS  Google Scholar 

  25. Andrews, G.E., Askey, R., Roy, R.: Special Functions. Cambridge University Press, Cambridge (1999)

    Book  Google Scholar 

  26. Werner, R.F.: Quantum states with Einstein-Podolsky-Rosen correlations admitting a hidden-variable model. Phys. Rev. A 40, 4277 (1989)

    Article  ADS  Google Scholar 

  27. Huang, Z.M.: Behaviors of quantum correlation for atoms coupled with fluctuating electromagnetic field with a perfectly reflecting boundary. Quantum Inf. Process. 18, 149 (2019)

    Article  ADS  MathSciNet  Google Scholar 

Download references

Acknowledgements

This work is supported by the National Natural Science Foundation of China (61871205), the Guangdong Basic and Applied Basic Research Foundation (2021A1515012623, 2021A1515012138, 2019A1515011166) and the Project of Department of Education of Guangdong Province (2019KTSCX188, 2020KTSCX132).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhiming Huang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huang, Z. Quantum entanglement for atoms coupling to fluctuating electromagnetic field in the cosmic string spacetime. Quantum Inf Process 20, 173 (2021). https://doi.org/10.1007/s11128-021-03119-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11128-021-03119-8

Keywords

Navigation