Skip to main content
Log in

Local distinguishability of Bell-type states

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

We consider the following scenario: a bipartite quantum state is prepared in one of the four Bell-type states. Each qubit is possessed by the spatially separated party, and the parties wish to distinguish between the four Bell-type states. To date, it is not possible to distinguish between the four orthonormal Bell-type states without entanglement-assisted discrimination by means of local operations and classical communication (LOCC). In this paper, we demonstrate the distinguishability of orthonormal Bell-type states with certainty by using LOCC, but no particle is exchanged between the two parties. We start with the local distinguishability of the orthogonal Bell-type states and generalize it for non-orthogonal Bell-type states with nonzero fidelity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Notes

  1. The QZ effect is the inhibition between quantum states by frequent multiple measurements of the state, that is, the quantum state usually collapses back to the initial state if the time between measurements is short enough [31, 32].

References

  1. Helstrom, C.W.: Quantum detection and estimation theory. J. Stat. Phys. 1(2), 231–252 (1969)

    Article  ADS  MathSciNet  Google Scholar 

  2. Helstrom, C.W.: Quantum Detection and Estimation Theory, vol. 123. Academic press, London (1976)

    MATH  Google Scholar 

  3. Helstrom, C.W.: The minimum variance of estimates in quantum signal detection. IEEE Trans. Inf. Theory 14(2), 234–242 (1968)

    Article  MathSciNet  MATH  Google Scholar 

  4. Ivanovic, I.D.: How to differentiate between non-orthogonal states. Phys. Lett. A 123(6), 257–259 (1987)

    Article  ADS  MathSciNet  Google Scholar 

  5. Peres, A.: How to differentiate between non-orthogonal states. Phys. Lett. A 128(1–2), 19 (1988)

    Article  ADS  MathSciNet  Google Scholar 

  6. Jaeger, G., Shimony, A.: Optimal distinction between two non-orthogonal quantum states. Phys. Lett. A 197(2), 83–87 (1995)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  7. Chefles, A.: Unambiguous discrimination between linearly independent quantum states. Phys. Lett. A 239(6), 339–347 (1998)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  8. Zhang, Z.C., Song, Y.Q., Song, T.T., Gao, F., Qin, S.J., Wen, Q.Y.: Local distinguishability of orthogonal quantum states with multiple copies of \(2\bigotimes 2\) maximally entangled states. Phys. Rev. A 97, 022334 (2018)

    Article  ADS  Google Scholar 

  9. Halder, S.: Several nonlocal sets of multipartite pure orthogonal product states. Phys. Rev. A 98, 022303 (2018)

    Article  ADS  Google Scholar 

  10. Shi, F., Zhang, X., Chen, L.: Unextendible product bases from tile structures and their local entanglement-assisted distinguishability. Phys. Rev. A 101, 062329 (2020)

    Article  ADS  MathSciNet  Google Scholar 

  11. Walgate, J., Short, A.J., Hardy, L., Vedral, V.: Local distinguishability of multipartite orthogonal quantum states. Phys. Rev. Lett. 85(23), 4972–4975 (2000)

    Article  ADS  Google Scholar 

  12. Virmani, S., Sacchi, M.F., Plenio, M.B., Markham, D.: Optimal local discrimination of two multipartite pure states. Phys. Lett. A 288(2), 62–68 (2001)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  13. Hayashi, M., Markham, D., Murao, M., Owari, M., Virmani, S.: Bounds on multipartite entangled orthogonal state discrimination using local operations and classical communication. Phys. Rev. Lett. 96, 040501 (2006)

    Article  ADS  MathSciNet  Google Scholar 

  14. Bandyopadhyay, S.: Entanglement and perfect discrimination of a class of multiqubit states by local operations and classical communication. Phys. Rev. A 81, 022327 (2010)

    Article  ADS  Google Scholar 

  15. Bandyopadhyay, S.: Entanglement, mixedness, and perfect local discrimination of orthogonal quantum states. Phys. Rev. A 85, 042319 (2012)

    Article  ADS  Google Scholar 

  16. Halder, S., Sengupta, R.: Distinguishability classes, resource sharing, and bound entanglement distribution. Phys. Rev. A 101, 012311 (2020)

    Article  ADS  Google Scholar 

  17. Zhang, Z.C., Wu, X., Zhang, X.: Locally distinguishing unextendible product bases by using entanglement efficiently. Phys. Rev. A 101, 022306 (2020)

    Article  ADS  MathSciNet  Google Scholar 

  18. Ghosh, S., Kar, G., Roy, A., Sarkar, D., Sen, A., Sen, U.: Local indistinguishability of orthogonal pure states by using a bound on distillable entanglement. Phys. Rev. A 65, 062307 (2002)

    Article  ADS  Google Scholar 

  19. Bandyopadhyay, S., Brassard, G., Kimmel, S., Wootters, W.K.: Entanglement cost of nonlocal measurements. Phys. Rev. A 80, 012313 (2009)

    Article  ADS  Google Scholar 

  20. Bandyopadhyay, S., Halder, S., Nathanson, M.: Entanglement as a resource for local state discrimination in multipartite systems. Phys. Rev. A 94, 022311 (2016)

    Article  ADS  Google Scholar 

  21. Güngör, Ö., Turgut, S.: Entanglement-assisted state discrimination and entanglement preservation. Phys. Rev. A 94, 032330 (2016)

    Article  ADS  Google Scholar 

  22. Vaidman, L., Yoran, N.: Methods for reliable teleportation. Phys. Rev. A 59(1), 116–125 (1999)

    Article  ADS  Google Scholar 

  23. Mattle, K., Weinfurter, H., Kwiat, P.G., Zeilinger, A.: Dense coding in experimental quantum communication. Phys. Rev. Lett. 76(25), 4656–4659 (1996)

    Article  ADS  Google Scholar 

  24. Zaman, F., Jeong, Y., Shin, H.: Dual quantum Zeno superdense coding. Sci. Rep. 9(1), 1–9 (2019)

    Article  Google Scholar 

  25. Cohen, S.M.: Local distinguishability with preservation of entanglement. Phys. Rev. A 75, 052313 (2007)

    Article  ADS  MathSciNet  Google Scholar 

  26. Cohen, S.M.: Understanding entanglement as resource: locally distinguishing unextendible product bases. Phys. Rev. A 77, 012304 (2008)

    Article  ADS  Google Scholar 

  27. Salih, H., Li, Z.H., Al-Amri, M., Zubairy, M.S.: Protocol for direct counterfactual quantum communication. Phys. Rev. Lett. 110(17), 170502 (2013)

    Article  ADS  Google Scholar 

  28. Aharonov, Y., Vaidman, L.: Modification of counterfactual communication protocols that eliminates weak particle traces. Phys. Rev. A 99(1), 010103 (2019)

    Article  ADS  Google Scholar 

  29. Dicke, R.H.: Interaction-free quantum measurements: a paradox. Am. J. Phys. 49(10), 925–930 (1981)

    Article  ADS  Google Scholar 

  30. Elitzur, A., Vaidman, L.: Quantum mechanical interaction-free measurement. Found. Phys. 23(76), 987–997 (1993)

    Article  ADS  Google Scholar 

  31. Itano, W.M., Heinzen, D.J., Bollinger, J.J., Wineland, D.: Quantum Zeno effect. Phys. Rev. A 41(5), 2295 (1990)

    Article  ADS  Google Scholar 

  32. Petrosky, T., Tasaki, S., Prigogine, I.: Quantum Zeno effect. Phys. Lett. A 151(3–4), 109–113 (1990)

    Article  ADS  MathSciNet  Google Scholar 

  33. Noh, T.G.: Counterfactual quantum cryptography. Phys. Rev. Lett. 103(23), 230501 (2009)

    Article  ADS  MathSciNet  Google Scholar 

  34. Yin, Z.Q., Li, H.W., Chen, W., Han, Z.F., Guo, G.C.: Security of counterfactual quantum cryptography. Phys. Rev. A 82(4), 042335 (2010)

    Article  ADS  Google Scholar 

  35. Yin, Z.Q., Li, H.W., Yao, Y., Zhang, C.M., Wang, S., Chen, W., Guo, G.C., Han, Z.F.: Counterfactual quantum cryptography based on weak coherent states. Phys. Rev. A 86(2), 022313 (2012)

    Article  ADS  Google Scholar 

  36. Salih, H.: Tripartite counterfactual quantum cryptography. Phys. Rev. A 90(1), 012333 (2014)

    Article  ADS  Google Scholar 

  37. Mitchison, G., Jozsa, R.: Counterfactual Computation, vol. 457, pp. 1175–1193. The Royal Society, New York (2001)

    MATH  Google Scholar 

  38. Hosten, O., Rakher, M.T., Barreiro, J.T., Peters, N.A., Kwiat, P.G.: Counterfactual quantum computation through quantum interrogation. Nature 439(7079), 949 (2006)

    Article  ADS  Google Scholar 

  39. Kong, F., Ju, C., Huang, P., Wang, P., Kong, X., Shi, F., Jiang, L., Du, J.: Experimental realization of high-efficiency counterfactual computation. Phys. Rev. Lett. 115(8), 080501 (2015)

    Article  ADS  Google Scholar 

  40. Jozsa, R.: Quantum effects in algorithums. Chaos Solitons Fract 10, 1657 (1999)

    MATH  Google Scholar 

  41. Mitchison, G., Jozsa, R., Popescu, S.: Sequential weak measurement. Phys. Rev. A 76, 062105 (2007)

    Article  ADS  Google Scholar 

  42. Zaman, F., Lee, K., Shin, H.: Information carrier and resource optimization of counterfactual quantum communication. Quantum Inf. Process (2021) submitted for publication. arXiv:2102.09181

  43. Chen, Y., Jian, D., Gu, X., Xie, L., Chen, L.: Counterfactual entanglement distribution using quantum dot spins. JOSA B 33(4), 663–669 (2016)

    Article  ADS  Google Scholar 

  44. Salih, H.: Protocol for counterfactually transporting an unknown qubit. Front. Phys. 3, 94 (2016)

    Article  Google Scholar 

  45. Cao, Y., Li, Y.H., Cao, Z., Yin, J., Chen, Y.A., Yin, H.L., Chen, T.Y., Ma, X., Peng, C.Z., Pan, J.W.: Direct counterfactual communication via quantum Zeno effect. Proc. Natl. Acad. Sci. USA 114(19), 4920–4924 (2017)

    Article  ADS  Google Scholar 

  46. Guo, Q., Cheng, L.Y., Chen, L., Wang, H.F., Zhang, S.: Counterfactual quantum-information transfer without transmitting any physical particles. Sci. Rep. 5, 8416 (2015)

    Article  Google Scholar 

  47. Li, Z.H., Al-Amri, M., Zubairy, M.S.: Direct counterfactual transmission of a quantum state. Phys. Rev. A 92(5), 052315 (2015)

    Article  ADS  Google Scholar 

  48. Liu, C., Liu, J., Zhang, J., Zhu, S.: The experimental demonstration of high efficiency interaction-free measurement for quantum counterfactual-like communication. Sci. Rep. 7(1), 10875 (2017)

    Article  ADS  Google Scholar 

  49. Guo, Q., Zhai, S., Cheng, L.Y., Wang, H.F., Zhang, S.: Counterfactual quantum cloning without transmitting any physical particles. Phys. Rev. A 96, 052335 (2017)

    Article  ADS  Google Scholar 

  50. Zaman, F., Jeong, Y., Shin, H.: Counterfactual Bell-state analysis. Sci. Rep. 8(1), 14641 (2018)

    Article  ADS  Google Scholar 

  51. Zaman, F., Shin, H., Win, M.Z.: Counterfactual concealed telecomputation. Phys. Rev. Lett. (2020) submitted for publication. arXiv:2012.04948

  52. Zaman, F., Shin, H., Win, M.Z.: Quantum duplex coding. arXiv:1910.03200 (2019)

Download references

Acknowledgements

This work was supported by the National Research Foundation of Korea (NRF) Grant funded by the Korea government (MSIT) (No. 2019R1A2C2007037).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hyundong Shin.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zaman, F., Hong, EK. & Shin, H. Local distinguishability of Bell-type states. Quantum Inf Process 20, 174 (2021). https://doi.org/10.1007/s11128-021-03114-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11128-021-03114-z

Keywords

Navigation