Skip to main content
Log in

Interaction-free measurements and counterfactual computation in IBM quantum computers

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

The possibility of interaction-free measurements and counterfactual computations is a striking feature of quantum mechanics pointed out around 20 years ago. We have designed simple quantum circuits that realize both phenomena in real 5-qubit, 15-qubit and 20-qubit IBM quantum computers. In particular, counterfactual computation in its simplest form (Jozsa protocol) cannot be directly implemented in present quantum computers, requiring the design of a modified quantum circuit. The results are in general close to the theoretical expectations. For the larger circuits (with numerous gates and consequently larger errors), we implement a simple error mitigation procedure which improve appreciably the performance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Notes

  1. The Mitchison and Jozsa bound has been discussed in refs. [5,6,7].

  2. We have verified this in the ibmqx2 5-bit quantum computer [18]. Namely, about 14% of the outputs (instead of the theoretical 0%) correspond to a state that has no interpretation in that context.

  3. This is equivalent to reset the q1 qubit at \(|0\rangle \). However, that operation is not yet supported by the IBM quantum computer.

  4. Alternatively, one can use the readout errors for the different qubits provided by the IBM Quantum Experience platform everyday [18]. The result is similar albeit less accurate.

References

  1. Elitzur, A.C., Vaidman, L.: Quantum mechanical interaction - free measurements. Found. Phys. 23, 987–997 (1993)

    Article  ADS  Google Scholar 

  2. Kwiat, P.G., Weinfurter (de), H., Herzog, T., Zeilinger, A., Kasevich, M.A.: Interaction-free measurement. Phys. Rev. Lett. 74, 4763 (1995)

  3. Jozsa, R.: “Quantum effects in algorithms,” [arXiv:quant-ph/9805086 [quant-ph]]

  4. Mitchison, G., Jozsa, R.: Counterfactual computation. Proc. R. Soc. Lond. A A457, 1175–1194 (2001)

    Article  ADS  MathSciNet  Google Scholar 

  5. Hosten, O., Rakher, M.T., Barreiro, J.T., Peters, N.A., Kwiat, P.G.: Counterfactual quantum computation through quantum interrogation. Nature 439(7079), 949–52 (2006)

    Article  ADS  Google Scholar 

  6. Vaidman, L.: Impossibility of the counterfactual computation for all possible outcomes. Phys. Rev. Lett. 98, 160403 (2007)

    Article  ADS  Google Scholar 

  7. Mitchison, G., Jozsa, R.: The limits of counterfactual computation. [arXiv:quant-ph/0606092v3]

  8. Kong, Fei, Chenyong, Ju, Huang, Pu, Wang, Pengfei, Kong, Xi, Shi, Fazhan, Jiang, Liang, Du, J.: Experimental realization of high-efficiency counterfactual computation. PRL 115, 080501 (2015)

    Article  ADS  Google Scholar 

  9. Tsegaye, T., Goobar, E., Karlsson, A., Björk, G., Loh, M.Y., Lim, K.H.: Efficient interaction-free measurements in a high-finesse interferometer. Phys. Rev. A 57(5), 3987–3990 (1998)

    Article  ADS  Google Scholar 

  10. White, Andrew G.: Interaction-free imaging. Phys. Rev. A 58(1), 605–613 (1998)

    Article  ADS  Google Scholar 

  11. Guo, Qi, Cheng, Liu-Yong, Chen, Li, Wang, Hong-Fu, Zhang, Shou: Counterfactual quantum-information transfer without transmitting any physical particles. Sci. Rep. 5, 8416 (2015)

    Article  Google Scholar 

  12. Cao, Y., Li, Y.-H., Cao, Z., Yin, J., Chen, Y.-A., Yin, H.-L., Chen, T.-Y., Ma, X., Peng, C.-Z., Pan, J.-W.: Direct counterfactual communication via quantum Zeno effect. PNAS 114(19), 4920 (2017)

    Article  ADS  Google Scholar 

  13. Putnam, William P.: Noninvasive electron microscopy with interaction-free quantum measurements. Phys. Rev. A. 80(4), 040902 (2009)

    Article  ADS  Google Scholar 

  14. Kruit, P., Hobbs, R.G., Kim, C.-S., Yang, Y., Manfrinato, V.R., Hammer, J., Thomas, S., Weber, P., Klopfer, B.: Designs for a quantum electron microscope. Ultramicroscopy 164, 31–45 (2016)

    Article  Google Scholar 

  15. Raj, A., Das, B., Behera, B.K., Panigrahi, P.K.: Demonstration of bomb detection using the IBM quantum computer. https://www.preprints.org/manuscript/201902.0232/v1

  16. Paraoanu, G.S.: Interaction-free measurements with superconducting qubits. Phys. Rev. Lett. 97, 180406 (2006)

    Article  ADS  Google Scholar 

  17. Zhou, You, Yung, Man-Hong: Interaction-free measurement as quantum channel discrimination. Phys. Rev. A 96, 062129 (2017)

    Article  ADS  Google Scholar 

  18. The IBM quantum experience, https://quantum-computing.ibm.com/. Accessed Apr 2020

Download references

Acknowledgements

We thank E. López and G. Sierra for inspiring conversations and advise. We also thank the IBM Quantum team for making multiple devices available via the IBM Quantum Experience. The access to the IBM Quantum Experience has been provided by the CSIC IBM Q Hub. We acknowledge the SEV-2016-0597 of the Centro de Excelencia Severo Ochoa Programme. B.Z. is further supported by the Programa Atracción de Talento de la Comunidad de Madrid under Grant no. 2017-T2/TIC-5455, from the Comunidad de Madrid/UAM “Proyecto de Jovenes Investigadores” Grant no. SI1/PJI/2019-00294, from Spanish “Proyectos de I+D de Generacion de Conocimiento” via grants PGC2018-096646-A-I00 and PGC2018-095161-B-I00.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bryan Zaldivar.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Casas, J.A., Zaldivar, B. Interaction-free measurements and counterfactual computation in IBM quantum computers. Quantum Inf Process 20, 114 (2021). https://doi.org/10.1007/s11128-021-03055-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11128-021-03055-7

Navigation