Skip to main content
Log in

Optimal fixed-point quantum search in an interacting Ising spin system

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

In Grover’s search algorithm, a priori knowledge of the number of target states is needed to effectively find a solution. This is due to the inherent oscillatory nature of unitary gates in the algorithm. A fixed-point quantum search is introduced in T. J. Yoder, G. H. Low and I. L. Chuang, (Phys. Rev. Lett.)113, 210501 [9] to mitigate this oscillation even without knowing the size of the target space. This is done by modifying the phase inversion and oracle of the original Grover’s algorithm so that the phase can assume intermediate values in \([-\pi ,\pi ]\). Naturally, qubits in a quantum computer are interacting among themselves and this might introduce an error in the phase assignment. In this work, we used the Ising spin chain to simulate the interactions among the qubits and demonstrate how to implement the fixed-point quantum search. By inspecting the state vectors after some finite number of iterations, we found that the error is primarily due to the phase difference of the ideal target state with that of the final state. Further investigation shows that high fidelity between the ideal and real evolution can be achieved by using a low Rabi frequency.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Grover, L.K.: Quantum mechanics helps in searching for a needle in a haystack. Phys. Rev. Lett. 79, 325–328 (1997)

    Article  ADS  Google Scholar 

  2. Bennett, C.H., Bernstein, E., Brassard, G., Vazirani, U.: Strengths and weaknesses of quantum computing. SIAM J. Comput. 26, 1510–1523 (1997)

    Article  MathSciNet  Google Scholar 

  3. Tulsi, A.: General framework for quantum search algorithms. Phys. Rev. A 86, 042331 (2012)

    Article  ADS  Google Scholar 

  4. Zhao, L.-J., Li, Y.-S., Hao, L., Zhou, T., Long, G.L.: Geometric pictures for quantum search algorithms. Quantum Inf. Process. 11, 325–340 (2012)

    Article  MathSciNet  Google Scholar 

  5. Bautista-Ramos, C., Guillén-Galván, C., Rangel-Huerta, A.: From orthogonal projections to a generalized quantum search. Quantum Inf. Process. 12, 1–20 (2013)

    Article  ADS  MathSciNet  Google Scholar 

  6. Grover, L.K.: Fixed-point quantum search. Phys. Rev. Lett. 95, 150501 (2005)

    Article  ADS  Google Scholar 

  7. Mizel, A.: Critically damped quantum search. Phys. Rev. Lett. 102, 150501 (2009)

    Article  ADS  Google Scholar 

  8. Sombillo, N.I., Banzon, R.S., Villagonzalo, C.: Measurement-enhanced quantum search. AIP Conf. Proc. 1871, 020002 (2017)

    Article  Google Scholar 

  9. Yoder, T.J., Low, G.H., Chuang, I.L.: Fixed-point quantum search with an optimal number of queries. Phys. Rev. Lett. 113, 210501 (2014)

    Article  ADS  Google Scholar 

  10. Godfrin, C., Ferhat, A., Ballou, R., Klyatskaya, S., Ruben, M., Wernsdorfer, W., Balestro, F.: Operating quantum states in single magnetic molecules: Implementation of Grover’s quantum algorithm. Phys. Rev. Lett. 119, 187702 (2017)

    Article  ADS  Google Scholar 

  11. Vandersypen, L.M.K., Chuang, I.L.: NMR techniques for quantum control and computation. Rev. Mod. Phys. 76, 1037–1069 (2004)

    Article  ADS  Google Scholar 

  12. Negrevergne, C., Mahesh, T.S., Ryan, C.A., Ditty, M., Cyr-Racine, F., Power, W., Boulant, N., Havel, T., Cory, D.G., Laflamme, R.: Benchmarking quantum control methods on a 12-qubit system. Phys. Rev. Lett. 96, 170501 (2006)

    Article  ADS  Google Scholar 

  13. Criger, B., Passante, G., Park, D., Laflamme, R.: Focused on the elimination of spin-environment interaction. Phil. Trans. R. Soc. A 370, 4620–4635 (2012)

    Article  ADS  Google Scholar 

  14. Rowland, B., Jones, J.: Implementing quantum logic gates with gradient ascent pulse engineering: principles and practicalities. Phil. Trans. R. Soc. A 370, 4636–4650 (2012)

    Article  ADS  MathSciNet  Google Scholar 

  15. Bian, J., Jiang, M., Cui, J., Liu, X., Chen, B., Li, Y., Zhang, B., Blanchard, J., Peng, X., Du, J.: Universal quantum control in zero-field nuclear magnetic resonance. Phys. Rev. A 95, 052342 (2017)

    Article  ADS  Google Scholar 

  16. Xin, T., Wang, B.-X., Li, K.-R., Kong, X.-Y., Wei, S.-J., Wang, T., Ruan, D., Long, G.L.: A recent review paper on NMR for quantum computing. Chin. Phys. B 27, 020308 (2018)

    Article  ADS  Google Scholar 

  17. Jiang, M., Wu, T., Blanchard, J.W., Feng, G., Peng, X., Budker, D.: Experimental benchmarking of quantum control in zero-field nuclear magnetic resonance. Sci. Adv. 4, eaar6327 (2018)

    Article  ADS  Google Scholar 

  18. Riaz, B., Shuang, C., Qamar, S.: Optimal control methods for quantum gate preparation: a comparative study. Quantum Inf. Process. 18, 100 (2019)

    Article  ADS  Google Scholar 

  19. López, G.V., Gorin, T., Lara, L.: Simulation of Grover’s quantum search algorithm in an Ising-nuclear-spin-chain quantum computer with first-and second-nearest neighbour couplings. J. Phys. B 41, 055504 (2008)

    Article  ADS  Google Scholar 

  20. López, G.V., Gorin, T., Lara, L.: Quantum computation in an Ising Spin chain Taking into Account Second Neighbor Couplings. Int. J. Theor. Phys. 47, 1641–1653 (2008)

    Article  MathSciNet  Google Scholar 

  21. Gorin, T., Lara, L., López, G.V.: Simulation of static and random errors on Grover’s search algorithm implemented in an Ising nuclear spin chain quantum computer with a few qubits. J. Phys. B 43, 085508 (2010)

    Article  ADS  Google Scholar 

  22. Bhole, G., Anjusha, V.S., Mahesh, T.S.: Steering quantum dynamics via bang-bang control: Implementing optimal fixed-point quantum search algorithm. Phys. Rev. A 93, 042339 (2016)

    Article  ADS  Google Scholar 

  23. López, G.V.: Diamond as a solid state quantum computer with a linear chain of nuclear spins system. J. of Mod. Phys. 5, 55–60 (2014)

    Article  ADS  Google Scholar 

  24. Vandersypen, L.M.K., Steffen, M., Breyta, G., Yannoni, C.S., Sherwood, M.H., Chuang, I.L.: Experimental realization of Shor’s quantum factoring algorithm using nuclear magnetic resonance. Nature 414, 883–887 (2001)

    Article  ADS  Google Scholar 

  25. Suter, D., Mahesh, T.S.: Spins as qubits: quantum information processing by nuclear magnetic resonance. J. Chem. Phys. 128, 052206 (2008)

    Article  ADS  Google Scholar 

  26. Oliveira, I.S., Serra, R.M.: Quantum information processing in NMR: theory and experiment. Phil. Trans. R. Soc. A 370, 4613 (2012)

    Article  ADS  Google Scholar 

  27. Oliveira, I.S., Bonagamba, T.J., Sarthour, R.S., Freitas, J.C.C., deAzavedo, E.R.: NMR quantum information processing. Elsevier Science B.V, Amsterdam (2007)

    Google Scholar 

  28. Nielsen, M.A., Chuang, I.L.: Quantum computation and quantum information: 10th anniversary edition. Cambridge Universtiy Press, USA (2011)

    MATH  Google Scholar 

  29. Berman, G.P., Doolen, G.D., Kamenev, D.I., López, G.V., Tsifrinovich, V.I.: Perturbation theory and numerical modeling of quantum logic operations with a large number of qubits. Contemp. Math. 305, 13 (2002)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

N.I. Sombillo would like to acknowledge the University of the Philippines Diliman—Office of the Vice Chancellor for Research and Development for a dissertation grant and the Department of Science and Technology—Science Education Institute through the Accelerated Science and Technology Human Resource Development Program for a scholarship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Neris I. Sombillo.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sombillo, N.I., Banzon, R.S. & Villagonzalo, C. Optimal fixed-point quantum search in an interacting Ising spin system. Quantum Inf Process 20, 90 (2021). https://doi.org/10.1007/s11128-021-03023-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11128-021-03023-1

Keywords

Navigation