Skip to main content
Log in

Enhancing the precision of parameter estimation in a dissipative qutrit via quantum feedback control and classical driving

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

In this paper, we use quantum feedback control and classical driving to enhance the precision of parameter estimation in a dissipative qutrit by investigating its dynamics of quantum Fisher information. We investigate the parameter estimation of a dissipative qutrit in a cavity which provides the quantum feedback to the qutrit. The results show that the precision of the parameter to be estimated can be effectively enhanced via the local quantum feedback control based on quantum-jump detection. Particularly, the higher parameter estimation accuracy can be achieved when the feedback control and classical driving are present at the same time.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Giovanetti, V., Lloyd, S., Maccone, L.: Quantum-enhanced measurements: beating the standard quantum limit. Science 306, 1330–1336 (2004)

    ADS  Google Scholar 

  2. Andersen, U.L.: Squeezing more out of LIGO. Nat. Photon. 7, 589–590 (2013)

    ADS  Google Scholar 

  3. Udem, T., Holzwarth, R., Hansch, T.W.: Optical frequency metrology. Nature (London) 416, 233–237 (2002)

    ADS  Google Scholar 

  4. Bollinger, J.J., Itano, W.M., Wineland, D.J., Heinzen, D.J.: Optimal frequency measurements with maximally correlated states. Phys. Rev. A 54, 4649–4652 (1996)

    ADS  Google Scholar 

  5. Huelga, S.F., Macchiavello, C., Pellizzari, T., Ekert, A.K., Plenio, M.B., Cirac, J.I.: On the improvement of frequency standards with quantum entanglement. Phys. Rev. Lett. 79, 3865–3868 (1997)

    ADS  Google Scholar 

  6. Holevo, A.S.: Probabilistic and Statistical Aspect of Quantum Theory. North-Holland, Amsterdam (1982)

    MATH  Google Scholar 

  7. Helstrom, C.W.: Quantum Detection and Estimation Theory. Academic, New York (1976)

    MATH  Google Scholar 

  8. Smerzi, A.: Zeno dynamics, indistinguishability of state, and entanglement. Phys. Rev. Lett. 109, 150410 (2012)

    ADS  Google Scholar 

  9. Salvatori, G., Mandarino, A., Paris, M.G.A.: Quantum metrology in Lipkin-Meshkov-Glick critical systems. Phys. Rev. A 90, 022111 (2014)

    ADS  Google Scholar 

  10. Yao, Y., Ge, L., Xiao, X., Wang, X.G., Sun, C.P.: Multiple phase estimation in quantum cloning machines. Phys. Rev. A 90, 022327 (2014)

    ADS  Google Scholar 

  11. Demkowicz-Dobrzański, R., Kolodyński, J., Gută, M.: The elusive Heisenberg limit in quantum-enhanced metrology. Nat. Commun. 3, 1063 (2012)

    ADS  Google Scholar 

  12. Hudelist, F., Kong, J., Liu, C., Jing, J., Ou, Z.Y., Zhang, W.P.: Quantum metrology with parametric amplifier-based photon correlation interferometers. Nat. Commun. 5, 3049 (2014)

    ADS  Google Scholar 

  13. Zhang, Y.M., Li, X.W., Yang, W., Jin, G.R.: Quantum Fisher information of entangled coherent states in the presence of photon loss. Phys. Rev. A 88, 043832 (2013)

    ADS  Google Scholar 

  14. Dür, W., Skotiniotis, M., Fröwis, F., Kraus, B.: Improved quantum metrology using quantum error correction. Phys. Rev. Lett. 112, 080801 (2014)

    ADS  Google Scholar 

  15. Watanabe, Y., Sagawa, T., Ueda, M.: Optimal measurement on noisy quantum systems. Phys. Rev. Lett. 104, 020401 (2010)

    ADS  Google Scholar 

  16. Tan, Q.S., Huang, Y.X., Yin, X.L., Kuang, L.M., Wang, X.G.: Enhancement of parameter-estimation precision in noisy systems by dynamical decoupling pulses. Phys. Rev. A 87, 032102 (2013)

    ADS  Google Scholar 

  17. Chin, A.W., Huelga, S.F., Plenio, M.B.: Quantum metrology in Non-Markovian environments. Phys. Rev. Lett. 109, 233601 (2012)

    ADS  Google Scholar 

  18. Berry, D.W., Wiseman, H.M.: Adaptive quantum measurements of a continuously varying phase. Phys. Rev. A 65, 043803 (2002)

    ADS  Google Scholar 

  19. Wiseman, H.M.: Quantum theory of continuous feedback. Phys. Rev. A 49, 2133–2150 (1994)

    ADS  Google Scholar 

  20. Wiseman, H.M., Milburn, G.J.: Quantum theory of optical feedback via homodyne detection. Phys. Rev. Lett. 70, 548–551 (1993)

    ADS  Google Scholar 

  21. Yamamoto, N.: Parametrization of the feedback Hamiltonian realizing a pure steady state. Phys. Rev. A 72, 024104 (2005)

    ADS  Google Scholar 

  22. Ma, S.Q., Zhu, H.J., Zhang, G.F.: The effects of different quantum feedback operator types on the parameter precision of detection efficiency in optimal quantum estimation. Phys. Lett. A 381, 1386–1392 (2017)

    ADS  Google Scholar 

  23. Gammelmark, S., Molmer, K.: Bayesian parameter inference from continuously monitored quantum systems. Phys. Rev. A 87, 032115 (2013)

    ADS  Google Scholar 

  24. Braun, D., Adesso, G., Benatti, F., Floreanini, R., Marzolino, U., Mitchell, M.W., Pirandola, S.: Quantum-enhanced measurements without entanglement. Rev. Mod. Phys. 90, 035006 (2018)

    ADS  MathSciNet  Google Scholar 

  25. Berry, D.W., Wiseman, H.M.: Adaptive phase measurements for narrowband squeezed beams. Phys. Rev. A 73, 063824 (2006)

    ADS  Google Scholar 

  26. Higgins, B.L., Berry, D.W., Bartlett, S.D., Wiseman, H.M., Pryde, G.J.: Entanglement-free Heisenberg-limited phase estimation. Nature (London) 450, 393–396 (2007)

    ADS  Google Scholar 

  27. Clark, L.A., Stokes, A., Beige, A.: Quantum-enhanced metrology with the single-mode coherent states of an optical cavity inside a quantum feedback loop. Phys. Rev. A 94, 023840 (2016)

    ADS  Google Scholar 

  28. Yuan, H.: Sequential feedback scheme outperforms the parallel scheme for hamiltonian parameter estimation. Phys. Rev. Lett. 117, 160801 (2016)

    ADS  Google Scholar 

  29. Clark, L.A., Stokes, A., Beige, A.: Quantum jump metrology. Phys. Rev. A 99, 022102 (2019)

    ADS  Google Scholar 

  30. Zheng, Q., Ge, L., Yao, Y., Zhi, Q.J.: Enhancing parameter precision of optimal quantum estimation by direct quantum feedback. Phys. Rev. A 91, 033805 (2015)

    ADS  Google Scholar 

  31. Adesso, G., DellAnno, F., De Siena, S., Illuminati, F., Souza, L.A.M.: Optimal estimation of losses at the ultimate quantum limit with non-Gaussian states. Phys. Rev. A 79, 040305(R) (2009)

    ADS  Google Scholar 

  32. Monras, A., Paris, M.G.A.: Optimal quantum estimation of loss in bosonic channels. Phys. Rev. Lett. 98, 160401 (2007)

    ADS  Google Scholar 

  33. Shao, X.Q., Zheng, T.Y., Zhang, S.: Engineering steady three-atom singlet states via quantum-jump-based feedback. Phys. Rev. A 85, 042308 (2012)

    ADS  Google Scholar 

  34. Wang, J., Wiseman, H.M., Milburn, G.J.: Dynamical creation of entanglement by homodyne-mediated feedback. Phys. Rev. A 71, 042309 (2005)

    ADS  Google Scholar 

  35. Wiseman, H.M., Milburn, G.J.: Interpretation of quantum jump and diffusion processes illustrated on the Bloch sphere. Phys. Rev. A 47, 1652–1666 (1993)

    ADS  Google Scholar 

  36. Wiseman, H.M., Milburn, G.J.: Quantum Measurement and Control. Cambridge University Press, Cambridge (2009)

    MATH  Google Scholar 

  37. Grove, T.T., Duncan, B.C., Sanchez-Villicana, V., Gould, P.L.: Observation of three-level rectified dipole forces acting on trapped atoms. Phys. Rev. A 51, R4325(R) (1995)

    ADS  Google Scholar 

  38. Fushman, I., Englund, D., Faraon, A., Stoltz, N., Petroff, P., Vuckovic, J.: Controlled phase shifts with a single quantum dot. Science 320, 769–772 (2008)

    ADS  Google Scholar 

  39. Dayan, B., Parkins, A.S., Aoki, T., Ostby, E.P., Vahala, K.J., Kimble, H.J.: A Photon turnstile dynamically regulated by one atom. Science 319, 1062–1065 (2008)

    ADS  Google Scholar 

  40. Fisher, R.A.: Theory of statistical Estimation. Proc. Camb. Philos. Soc. 22, 700–725 (1925)

    ADS  MATH  Google Scholar 

  41. Braunstein, S.L., Caves, C.M.: Statistical distance and the geometry of quantum states. Phys. Rev. Lett. 72, 3439–3443 (1994)

    ADS  MathSciNet  MATH  Google Scholar 

  42. Braunstein, S.L., Caves, C.M., Milburn, G.J.: Generalized uncertainty relations: theory, examples, and Lorentz invariance. Ann. Phys. (NY) 247, 135–173 (1996)

    ADS  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

This work is supported by the National Natural Science Foundation of China (Grant No.11374096).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mao-Fa Fang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

A Appendix A: quantum Fisher information

In this section, we will review the basic properties of QFI. We assume \(\varphi \) to be a single parameter and \(P_{i}(\varphi )\) to be the probability density with measurement outcome {\(x_{i}\)} for a discrete observable X conditioned on the fixed parameter \(\varphi \). The bound of the variance Var(\({\hat{\varphi }}\)) for an unbiased estimator \({\hat{\varphi }}\) is given by the classical Cramer–Rao inequality [6]. The classical Cramer–Rao inequality gives the bound of the variance Var(\({\hat{\varphi }}\)) for an unbiased estimator \({\hat{\varphi }}\),

$$\begin{aligned} Var({\hat{\varphi }}) \ge \frac{1}{H_{\varphi }} \end{aligned}$$
(11)

where the classical Fisher information is given as [40] \(H_{\varphi }=\sum _{i}P_{i}(\varphi )[\frac{\partial }{\partial \varphi }lnP_{i}(\varphi )]^2\).

The symmetric logarithmic derivative \(L_{\varphi }\) is determined by \(\frac{\partial \rho _{\varphi }}{\partial \varphi }=\frac{1}{2}(\rho _{\varphi }L_{\varphi }+L_{\varphi }\rho _{\varphi })\) in order to extend to quantum regime. Consequently, a bound of the variance of unbiased estimates is given by the so-called quantum Cramer–Rao inequality [41]:

$$\begin{aligned} Var({\hat{\varphi }}) \ge \frac{1}{H_{\varphi }} \ge \frac{1}{F_{\varphi }} \end{aligned}$$
(12)

What is worth mentioning is that an optimal metric is provided by symmetric logarithmic derivative \(L_{\varphi }\). Here, the QFI of the parameter \(\varphi \) can be given as [42]

$$\begin{aligned} F_{\varphi }=Tr[\rho _{\varphi }L_{\varphi }^2] \end{aligned}$$
(13)

In addition, taking advantage of the spectrum decomposition \(\rho _{\varphi }=\sum _{k} \lambda _{k}|k\rangle \langle k|\), the QFI can be represented as

$$\begin{aligned} F_{\varphi }= & {} \sum _{k,\lambda _{k} \ge 0}\frac{(\partial _{\varphi }\lambda _{k})^2}{\lambda _{k}}+ \sum _{k,k^{'},\lambda _{k}+\lambda _{k^{'}} \ge 0} \frac{2(\lambda _{k}-\lambda _{k^{'}})^2}{\lambda _{k}+\lambda _{k^{'}}}|\langle k|\partial _{\varphi }k^{'}\rangle |^2. \end{aligned}$$
(14)

The first term can be considered as the classical Fisher information, and the second term in this equation is just the quantum contribution. And the expression of the symmetric logarithmic derivative can be written as

$$\begin{aligned} L_{\varphi }=\sum _{k,k^{'},\lambda _{k}+\lambda _{k^{'}} \ge 0} \frac{2\langle k|\partial _{\varphi }k^{'}\rangle }{\lambda _{k}+\lambda _{k^{'}}}|k\rangle \langle k^{'}|. \end{aligned}$$
(15)

Moreover, the QFI is also related to the Bures distance, which can be expressed as [41]

$$\begin{aligned} D_{B}^2[\rho _{\varphi },\rho _{\varphi +d\varphi }]=\frac{1}{4}F_{\varphi }d\varphi ^2, \end{aligned}$$
(16)

Here, \(D_{B}^2[\rho ,\sigma ]=[2(1-Tr\root \of {\rho ^{1/2}\sigma \rho ^{1/2}})]^{1/2}\) defines the Bures distance, which measures the distance between two quantum states \(\rho \) and \(\sigma \) .

B Appendix B: Solution of Eq. (9)

Without driving, the evolved density matrix of the qutrit can be exactly solved, which can be given as

$$\begin{aligned} \rho _{11}(t)= & {} \exp {(-t\gamma _{1}+t\alpha _{1})} \nonumber \\ \rho _{12}(t)= & {} i\left[ \exp {(-\frac{1}{2}t \gamma _{1}-\frac{1}{2}t\gamma _{2})}-\exp {(t\alpha _{1}-t\gamma _{1} )} \right] \eta _{1} \nonumber \\&\qquad \times&\gamma _{1}(\gamma _{2}-\gamma _{1}+2\alpha _{1})^{-1} \sin (2\lambda _{23}) \nonumber \\ \rho _{13}(t)= & {} 0 \nonumber \\ \rho _{22}(t)= & {} \left[ \exp {(-t\gamma _{1}+t\alpha _{1})} - \exp {(-t\gamma _{2}+t\alpha _{2})} \right] (\gamma _{1}-\alpha _{1}) \nonumber \\&\qquad \times&(\beta _{1}-\beta _{2})^{-1} \nonumber \\ \rho _{23}(t)= & {} i\left[ 2\exp {(\frac{1}{2}t\gamma _{2})(\beta _{1}{-}\beta _{2})}{+}\exp {(t\alpha _{1}-t\gamma _{1}{+}t\gamma _{2})}(\alpha _{2}{+}\beta _{2}){-}\exp {(t\alpha _{2})} (2\beta _{1}{+}\gamma _{2})\right] \nonumber \\&\qquad \times&\eta _{2} \beta _{1} \exp {(-t\gamma _{2})} \sin (2\lambda _{12}) \left[ (\beta _{1}-\beta _{2})(2\beta _{1}+\gamma _{2})(2\eta _{2}\sin (\lambda _{12})^2-1) \right] ^{-1} \nonumber \\ \rho _{33}(t)= & {} 1-\rho _{22}(t)-\rho _{11}(t) \quad \rho _{21}(t)=\rho _{12}(t)^{*} \nonumber \\ \rho _{32}(t)= & {} \rho _{23}(t)^{*} \quad \rho _{31}(t)=\rho _{13}(t)^{*} \end{aligned}$$

where \(\alpha _{1}= \gamma _{1} \eta _{1} \sin (\lambda _{23})^2\), \(\alpha _{2}= \gamma _{2} \eta _{2} \sin (\lambda _{12})^2\), \(\beta _{1}=\alpha _{1}-\gamma _{1}\), and \(\beta _{2}=\alpha _{2}-\gamma _{2}\). When \(\eta _{1}=\eta _{2}=1\), the above equation becomes Eq. (7).

With driving, we cannot solve the time-evolving density matrix of the qutrit analytically. However, one can obtain the density matrix elements of the steady state in the long-time limit as

$$\begin{aligned} \rho _{11}= & {} 16\varOmega _{1}^2\varOmega _{2}^2(\varepsilon _{6}-\eta _{2}\gamma _{2}+\varepsilon _{1})/N \nonumber \\ \rho _{12}= & {} -8i\varOmega _{1}\varOmega _{2}^2(\gamma _{1}-\eta _{1}\gamma _{1}+\varepsilon _{2})(\varepsilon _{6}-\eta _{2}\gamma _{2})/N \nonumber \\ \rho _{13}= & {} -4\varOmega _{1}\varOmega _{2}\left[ 1/2\varepsilon _{2}\varepsilon _{6}(\varepsilon _{3}+2\gamma _{2}-\eta _{2}\gamma _{2})- (\varepsilon _{1}-\varepsilon _{9})(\varepsilon _{6}\varepsilon _{8}-4\varOmega _{1}^2)\right. \nonumber \\ \rho _{22}= & {} 2\gamma _{1}\varOmega _{2}^{2}\left[ 8\varepsilon _{7}{-}(\eta _{1}-2)\varepsilon _{6}\gamma _{1}{-}4(\varepsilon _{4}\varOmega _{1}+\eta _{1}\varOmega _{2}^2) +\eta _{1}\cos (2\lambda _{23})(\varepsilon _{6}\gamma _{1}+4\varOmega _{2}^2) \right] /N \nonumber \\ \rho _{23}= & {} -i\left[ 8\varepsilon _{7}-(\eta _{1}-2)\varepsilon _{6}\gamma _{1}-4(\varepsilon _{4}\varOmega _{1}+\eta _{1}\varOmega _{2}^2) +\eta _{1}\cos (2\lambda _{23})(\varepsilon _{6}\gamma _{1}+4\varOmega _{2}^2) \right] \nonumber \\&\qquad \times&\gamma _{1}\gamma _{2}\varOmega _{2}(1-\eta _{2}\sin (\lambda _{12})^2)/N \nonumber \\ \rho _{33}= & {} 1-\rho _{22}-\rho _{11} \quad \rho _{21}=\rho _{12}^{*} \nonumber \\ \rho _{32}= & {} \rho _{23}^{*} \qquad \rho _{31}=\rho _{13}^{*} \end{aligned}$$
(17)

with \(\varepsilon _{1}=\eta _{2}\gamma _{2}\cos (\lambda _{12})^2\), \(\varepsilon _{2}=\eta _{1}\gamma _{1}\cos (\lambda _{23})^2\), \(\varepsilon _{3}=\eta _{2}\gamma _{2}\cos (2\lambda _{12})\), \(\varepsilon _{4}=\eta _{1}\gamma _{1}\sin (2\lambda _{23})\), \(\varepsilon _{5}=\eta _{2}\gamma _{2}\sin (2\lambda _{12})\), \(\varepsilon _{6}=\gamma _{1}+\gamma _{2}\), \(\varepsilon _{7}=\varOmega _{1}^2+\varOmega _{2}^2\), \(\varepsilon _{8}=(\eta _{1}-1)\gamma _{1}\), \(\varepsilon _{9}=(\eta _{2}-1)\gamma _{2}\), \(\varepsilon _{10}=\gamma _{1}\gamma _{2}+4\varOmega _{1}^2\), \(\nu _{1}=2(\eta _{2}-1)\varepsilon _{8}-(2-\eta _{2})\varepsilon _{2}\), \(\nu _{2}=\varepsilon _{3}-(\eta _{2}-2)\gamma _{2}\), \(\nu _{3}=\gamma _{1}(\gamma _{2}-\eta _{1}\gamma _{2})+4\varOmega _{1}^2\), \(\nu _{4}=2\gamma _{1}^2+2\gamma _{1}\gamma _{2}+\gamma _{2}^2-\eta _{2}\gamma _{2}^2\), \(\nu _{5}=8\varOmega _{1}^2-4\varepsilon _{6}\gamma _{1}+(\eta _{2}-2)\gamma _{2}^2\), \(\nu _{6}=\varepsilon _{9}\varOmega _{1}+\gamma _{1}(\varepsilon _{4}-2\varOmega _{1}+\eta _{1}\varOmega _{1})\) and \(N=\frac{1}{2}\left[ \varepsilon _{10}\varepsilon _{6}\nu _{1}+\varepsilon _{2}\varepsilon _{3}(4\varepsilon _{7}+\varepsilon _{6}\gamma _{1}) \right] \gamma _{2}-\varepsilon _{10}\varepsilon _{4}\nu _{2}\varOmega _{1}+2(\varepsilon _{2}\varepsilon _{3}\gamma _{1}-2\varepsilon _{10}\varepsilon _{9})\varOmega _{1}^2 +\varepsilon _{1}\varepsilon _{10}(4\varOmega _{1}^2-\varepsilon _{6}\varepsilon _{8})+2\varepsilon _{5}\gamma _{1}(2\varepsilon _{4}\varOmega _{1}-\varepsilon _{2}\varepsilon _{6}-4\varepsilon _{7}+\varepsilon _{6}\varepsilon _{8})\varOmega _{2} +4\nu _{3}\varepsilon _{1}\varOmega _{2}^2-2\varOmega _{2}^2(2\varepsilon _{8}\nu _{4}+\varepsilon _{2}\nu _{5}+8\varOmega _{1}\nu _{6})-8\varepsilon _{5}\varOmega _{2}^3(\varepsilon _{2}-\eta _{1}\gamma _{1})+32\varOmega _{2}(\varepsilon _{2}-\varepsilon _{8})\). When \(\eta _{1}=\eta _{2}=1\), the above equation becomes Eq. (10).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, C., Fang, MF. Enhancing the precision of parameter estimation in a dissipative qutrit via quantum feedback control and classical driving. Quantum Inf Process 19, 112 (2020). https://doi.org/10.1007/s11128-020-2613-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11128-020-2613-y

Keywords

Navigation