Skip to main content
Log in

An investigation on support vector clustering for big data in quantum paradigm

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

The support vector clustering algorithm is a well-known clustering algorithm based on support vector machines using Gaussian or polynomial kernels. The classical support vector clustering algorithm works well in general, but its performance degrades when applied on big data. In this paper, we have investigated the performance of support vector clustering algorithm implemented in a quantum paradigm for possible runtime improvements. We have developed and analyzed a quantum version of the support vector clustering algorithm. The proposed approach is based on the quantum support vector machine [1] and quantum kernels (i.e., Gaussian and polynomial). The classical support vector clustering algorithm converges in \( O\left( {M^{2} N} \right) \) runtime complexity, where M is the number of input objects and N is the dimension of the feature space. Our proposed quantum version converges in \( \sim O\left( {\log MN} \right) \) runtime complexity. The clustering identification phase with adjacency matrix exhibits \( O\left( {\sqrt {M^{3} lgM} } \right) \) runtime complexity in the quantum version, whereas the runtime complexity in the classical implementation is \( O\left( {M^{2} } \right) \). The proposed quantum version of the support vector clustering method demonstrates a significant speedup gain on the overall runtime complexity as compared to the classical counterpart.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Bishwas, A.K., Mani, A., Palade, V.: An all-pair quantum SVM approach for big data multiclass classification. Quantum Inf. Process. 17, 282 (2018). https://doi.org/10.1007/s11128-018-2046-z

    Article  ADS  MathSciNet  MATH  Google Scholar 

  2. Lloyd, S, Mohseni, M., Rebentrost, P.: Quantum Algorithms for Supervised and Unsupervised Machine Learning, arXiv:1307.0411

  3. MacKay, D. (2003) Chapter 20. An Example Inference Task: Clustering (PDF). Information Theory, Inference and Learning Algorithms. Cambridge University Press, pp. 284–292. ISBN 0-521-64298-1. MR 2012999

  4. Ostrovsky, R., Rabani, Y., Schulman, L.J., Swamy, C. (2006). The effectiveness of Lloyd-type methods for the k-means problem. In: Proceedings of the 47th annual IEEE symposium on foundations of computer science (FOCS’06). IEEE, pp. 165–174

  5. Bensaid, A.M., Hall, L.O., Bezdek, J.C., Clarke, L.P.: Partially Supervised Clustering for Image Segmentation Pattern Recognition. Elsevier, Amsterdam (1996). https://doi.org/10.1016/0031-3203(95)00120-4

    Book  Google Scholar 

  6. Bishwas, A.K., Mani, A., Palade, V.: Quantum sequence clustering. In: Bhattacharyya, S., Mukherjee, A., Pan, I., Dutta, P., Bhaumik, A.K. (eds.) Hybrid Intelligent Techniques for Pattern Analysis and Understanding. CRC Press, New York (2017)

    MATH  Google Scholar 

  7. Ben-Hur, A., Horn, D., Siegelmann, H.T.: Support vector clustering. J. Mach. Res. 2, 125–137 (2001)

    MATH  Google Scholar 

  8. Sheng, Y.-B., Zhou, L.: Distributed secure quantum machine learning. Sci. Bull. 62(14), 1025–1029 (2017)

    Article  Google Scholar 

  9. Duan, B., Yuan, J., Xu, J., Li, D.: Quantum algorithm and quantum circuit for A-optimal projection: dimensionality reduction. Phys. Rev. A 99, 032311 (2019)

    Article  ADS  Google Scholar 

  10. Scholkopf, B., Platt, J., Shawe-Taylor, J., Smola, A., Williamson, R.: Estimating the support of a high-dimensional distribution. Neural Comput. 13(7), 1443–1471 (2001)

    Article  Google Scholar 

  11. Scholkopf, B., Williamson, R., Smola, A., Shawe-Taylor, J., Platt, J.: Support vector method for novelty detection. In: Advances in Neural Information Processing Systems (NIPS), pp. 582–588 (2000)

  12. Khan, S.S, Madden, M.G.: One-Class Classification: Taxonomy of Study and Review of Techniques, arXiv:1312.0049v1 (2013)

  13. P. Rebentrost, M. Mohseni and S. Lloyd, arXiv:1307.0471v3

  14. Bishwas, A.K., Mani, A., Palade, V.: arxiv.org/pdf/1711.01464

  15. Suykens, J.A.K., Vandewalle, J.: Least squares support vector machine classifiers. Neural Process. Lett. 9(3), 293–300 (1999). https://doi.org/10.1023/A:1018628609742

    Article  Google Scholar 

  16. Saunders, C., Gammerman, A., Vovk, V.: Ridge regression learning algorithm in dual variables. In: Proceedings of the 15th International Conference on Machine Learning, ICML-98, Madison-Wisconsin (1998)

  17. Fletcher, R.: Pmctical Methods of Optimization. John Wdey and Sons, Chichester (1987)

    Google Scholar 

  18. Fletcher, R., Johnson, T.: On the stability of null-space methods for KKT systems. SIAM J. Matrix Anal. Appl. 18(4), 938–958 (1997)

    Article  MathSciNet  Google Scholar 

  19. Aly, M. (2005). Survey on multiclass classification methods (PDF). Technical Report, Caltech

  20. Bishwas, A.K., Mani, A., Palade, V.: Big data classification with quantum multiclass SVM and quantum one-against-all approach. In: Conference Proceedings to IEEE 2nd International Conference on Contemporary Computing and Informatics (IC3I) (2016). https://doi.org/10.1109/ic3i.2016.7918805

  21. Lloyd, S., Mohseni, M., Rebentrost, P.: arXiv:1307.0401 (2013)

  22. Berry, D., Ahokas, G., Cleve, R., Sanders, B.: Efficient quantum algorithms for simulating sparse Hamiltonians. Commun. Math. Phys. 270, 359 (2007)

    Article  ADS  MathSciNet  Google Scholar 

  23. Harrow, A., Hassidim, A., Lloyd, S.: Quantum algorithm for linear systems of equations. Phys. Rev. Lett. 103, 150502 (2009)

    Article  ADS  MathSciNet  Google Scholar 

  24. Lloyd, S., Mohseni, M., Rebentrost, P.: arXiv:1307.0411 (2013)

  25. Aaronson, S., Grier, D., Schaeffer, L.: The Classification of Reversible Bit Operations. arXiv:1504.05155 [quant-ph] (2015)

  26. Bennett, C.H.: Logical reversibility of computation. IBM J. Res. Dev. 17, 525–532 (1973)

    Article  MathSciNet  Google Scholar 

  27. Giovannetti, V., Lloyd, S., Maccone, L.: Quantum random access memory. Phys. Rev. Lett. 100, 160501 (2008)

    Article  ADS  MathSciNet  Google Scholar 

  28. Furrow, B.: A panoply of quantum algorithms. J. Quantum Inf. Comput. ACM 8(8), 834–859 (2008)

    MathSciNet  MATH  Google Scholar 

  29. Grover, L.: A fast quantum mechanical algorithm for database search. In: Proceedings of 28th Annual ACM Symposium on Theory of Computing (STOC), pp. 212–219 (1996)

  30. Boyer, M., Brassard, G., Høyer, P., Tapp, A.: Tight bounds on quantum searching. Fortschr. Phys. 46(4–5), 493–505 (1998)

    Article  Google Scholar 

  31. Buhrman, H., Cleve, R., de Wolf, R., Zalka, C.: Bounds for small-error and zero-error quantum algorithms. In: 40th IEEE Symposium on Foundations of Computer Science (FOCS), pp. 358–368 (1999)

  32. https://www.ibm.com/quantum-computing/

  33. https://qiskit.org/

  34. https://github.com/Qiskit/qiskit-community-tutorials/blob/master/awards/teach_me_quantum_2018/TeachMeQ/Week_8-High_Level_Quantum_Programming/exercises/qsvm_datasets.py

  35. https://qiskit.org/textbook/ch-algorithms/grover.html#3.1-Qiskit-Implementation-

  36. Blomkvist Karlsson, V., Strömberg, P.: 4-qubit Grover’s algorithm implemented for the ibmqx5 architecture, http://www.diva-portal.org/smash/get/diva2:1214481/FULLTEXT01.pdf (2018)

  37. Tax, D.M.J., Duin, R.P.W.: Support vector domain description. Pattern Recogn. Lett. 20, 1991–1999 (1999)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arit Kumar Bishwas.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bishwas, A.K., Mani, A. & Palade, V. An investigation on support vector clustering for big data in quantum paradigm. Quantum Inf Process 19, 108 (2020). https://doi.org/10.1007/s11128-020-2606-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11128-020-2606-x

Keywords

Navigation