Skip to main content
Log in

Two-copy quantum teleportation based on GHZ measurement

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

We investigate quantum teleportation in the two-copy setting based on GHZ measurement and propose the detailed protocol. The output state after the teleportation is analyzed, and the protocol is proved to be trace preserving. The general expression of the optimal teleportation fidelity is derived. The optimal teleportation fidelity is shown to be a linear function of two-copy fully entangled fraction, which is invariant under local unitary transformations. At last, we show two-copy teleportation based on GHZ measurement can be better than one-copy teleportation by an explicit example, which is amenable to demonstration in experiments. Our study is significant for improving the fidelity of teleportation for some limited resource which cannot be significantly distilled. Moreover, it can inspire us to find many other more efficient protocols for teleportation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information. Cambridge University Press, Cambridge (2000)

    MATH  Google Scholar 

  2. Bennett, C.H., et al.: Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels. Phys. Rev. Lett. 70, 1895 (1993)

    Article  ADS  MathSciNet  Google Scholar 

  3. D’Ariano, G.M., Lo Presti, P., Sacchi, M.F.: Bell measurement and observables. Phys. Lett. A 272, 32 (2000)

    Article  ADS  MathSciNet  Google Scholar 

  4. Bowen, G., Bose, S.: Teleportation as a Depolarizing Quantum Channel, Relative Entropy, and Classical Capacity. Phys. Rev. Lett. 87, 267901 (2001)

    Article  ADS  Google Scholar 

  5. Albeverio, S., Fei, S.M., Yang, W.L.: Teleportation with an Arbitrary Mixed Resource as a Trace-Preserving Quantum Channel. Commun. Theor. Phys. 38, 301–304 (2002)

    Article  ADS  MathSciNet  Google Scholar 

  6. Cavalcanti, D., Skrzypczyk, P., Supic, Ivan: All entangled states can demonstrate nonclassical teleportation. Phys. Rev. Lett. 119, 110501 (2017)

    Article  ADS  Google Scholar 

  7. Ganguly, N., Adhikari, S., Majumdar, A.S., Chatterjee, J.: Entanglement witness operator for quantum teleportation. Phys. Rev. Lett. 107, 270501 (2011)

    Article  Google Scholar 

  8. Zhao, M.J., Fei, S.M., Li-Jost, X.: Complete entanglement witness for quantum teleportation. Phys. Rev. A 85, 054301 (2012)

    Article  ADS  Google Scholar 

  9. Cavalcanti, D., Acin, A., Brunner, N., Vertesi, T.: All quantum states useful for teleportation are nonlocal resources. Phys. Rev. A 87, 042104 (2013)

    Article  ADS  Google Scholar 

  10. Vertesi, T., Brunner, N.: Disproving the Peres conjecture: Bell nonlocality from bipartite bound entanglement. Nat. Commun. 5, 5297 (2014)

    Article  ADS  Google Scholar 

  11. Albeverio, S., Fei, S.M., Yang, W.L.: Optimal teleportation based on bell measurement. Phys. Rev. A 66, 012301 (2002)

    Article  ADS  Google Scholar 

  12. Horodecki, M., Horodecki, P., Horodecki, R.: General teleportation channel, singlet fraction, and quasidistillation. Phys. Rev. A 60, 1888 (1999)

    Article  ADS  MathSciNet  Google Scholar 

  13. Alber, G., et al.: Quantum Information: An Introduction to Basic Concepts and Experiments. Springer Tracts in Modern Physics. Springer, Berlin (2001)

    MATH  Google Scholar 

  14. Gu, R.J., Li, M., Fei, S.M., Li-Jost, X.: On estimation of fully entangled fraction. Commun. Theor. Phys. 53, 265 (2010)

    Article  ADS  Google Scholar 

  15. Abeyesinghe, A., Devetak, I., Hayden, P., Winter, A.: The mother of all protocols: restructuring quantum information’s family tree. Proc. R. Soc. A 465(2108), 2537–2563 (2009)

    Article  ADS  MathSciNet  Google Scholar 

  16. Bennett, C.H., et al.: Purification of noisy entanglement and faithful teleportation via noisy channels. Phys. Rev. Lett. 76, 722–725 (1996)

    Article  ADS  Google Scholar 

  17. Bennett, C.H., Bernstein, H.J., Popescu, S., Schumacher, B.: Concentrating partial entanglement by local operations. Phys. Rev. A 53, 2046 (1996)

    Article  ADS  Google Scholar 

  18. Horodecki, M., Horodecki, P., Horodecki, R.: Inseparable two Spin-1/2 density matrices can be distilled to a singlet form. Phys. Rev. Lett. 78, 574 (1997)

    Article  ADS  Google Scholar 

  19. Horodecki, M., Horodecki, P., Horodecki, R.: Mixed-state entanglement and distillation: is there a bound entanglement in nature? Phys. Rev. Lett. 80, 5239 (1998)

    Article  ADS  MathSciNet  Google Scholar 

  20. Peres, A.: Separability criterion for density matrices. Phys. Rev. Lett. 77, 1413 (1996)

    Article  ADS  MathSciNet  Google Scholar 

  21. Horodecki, R., Horodecki, P., Horodecki, M., Horodecki, K.: Quantum entanglement. Rev, Mod. Phys. 81, 865 (2009)

    Article  ADS  MathSciNet  Google Scholar 

  22. Horodecki, P.: Separability criterion and inseparable mixed states with positive partial transposition. Phys. Lett. A 232, 333 (1996)

    Article  ADS  MathSciNet  Google Scholar 

  23. Quan, Q., Zhao, M.J., Fei, S.M., Fan, H., Yang, W.L., Long, G.L.: Two-copy quantum teleportation. Sci. Rep. 8, 13960 (2018)

    Article  ADS  Google Scholar 

  24. Werner, R.F.: All teleportation and dense coding schemes. J. Phys. A Math. Gen. 34, 7081 (2001)

    Article  ADS  MathSciNet  Google Scholar 

  25. Horodecki, M., Horodecki, P., Horodecki, R.: Mixed-state entanglement and quantum communication. eprint quant-ph/0109124 (2001)

  26. Grondalski, J., Etlinger, D.M., James, D.F.V.: The fully entangled fraction as an inclusive measure of entanglement applications. Phys. Lett. A 300, 573 (2002)

    Article  ADS  MathSciNet  Google Scholar 

  27. Zhao, M.J., Li, Z.G., Fei, S.M., Wang, Z.X.: A note on fully entangled fraction. J. Phys. A 43, 275203 (2010)

    Article  MathSciNet  Google Scholar 

  28. Li, M., Fei, S.M., Wang, Z.X.: Upper bound of the fully entangled fraction. Phys. Rev. A 78, 032332 (2008)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

We gratefully thank for the supports by National Key Research and development program of China (2017YFA0303700). Q. Q. acknowledges financial supports from NSFC (Grant No. 11704217). M. J. Zhao acknowledges financial supports from NSFC (Grant No. 11401032), the China Scholarship Council (Grant No. 201808110022), and Qin Xin Talents Cultivation Program, Beijing Information Science and Technology University, Key Project of Beijing Municipal Commission of Education (KZ201810028042). G.-L.L. acknowledges support from the Center of Atomic Molecular Nanosciences, Tsinghua University, and Beijing Advanced Innovation Center for Future Chip (ICFC). T.-J.W. acknowledges the Open Research Fund Program of State Key Laboratory of Low-Dimensional Quantum Physics (KF201610).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Quan Quan.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Quan, Q., Zhao, MJ., Fei, SM. et al. Two-copy quantum teleportation based on GHZ measurement. Quantum Inf Process 19, 205 (2020). https://doi.org/10.1007/s11128-020-02696-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11128-020-02696-4

Keywords

Navigation