Skip to main content
Log in

Thermal entanglement phase transition in coupled harmonic oscillators with arbitrary time-dependent frequencies

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

We derive explicitly the thermal state of the two-coupled harmonic oscillator system when the spring and coupling constants are arbitrarily time-dependent. In particular, we focus on the case of sudden change of frequencies. In this case we compute purity function, Rényi and von Neumann entropies, and mutual information analytically and examine their temperature dependence. We also discuss on the thermal entanglement phase transition by making use of the negativity-like quantity. Our calculation shows that the critical temperature \(T_c\) increases with increasing the difference between the initial and final frequencies. In this way we can protect the entanglement against the external temperature by introducing large difference of initial and final frequencies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Notes

  1. See Ref. [12] and web page https://www.computing.co.uk/ctg/news/3065541/european-union-reveals-test-projects-for-first-tranche-of-eur1bn-quantum-computing-fund.

  2. In fact, one can show that \(b (\beta )\) in Eq. (2.17) is a solution of \(\frac{d^2 b}{d \beta ^2} -\omega ^2 b = - \frac{\omega _0^2}{b^3}\).

  3. The subscript E in \(\Gamma _{E,j}\) stands for “Euclidean.” This subscript is attached to stress the point that the inverse temperature \(\beta \) is introduced as a Euclidean time.

References

  1. Schrödinger, E.: Die gegenwärtige Situation in der Quantenmechanik. Naturwissenschaften 23, 807 (1935)

    Article  ADS  Google Scholar 

  2. Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information. Cambridge University Press, Cambridge, England (2000)

    MATH  Google Scholar 

  3. Horodecki, R., Horodecki, P., Horodecki, M., Horodecki, K.: Quantum Entanglement. Rev. Mod. Phys. 81, 865 (2009). arXiv:quant-ph/0702225 and references therein

    Article  ADS  MathSciNet  Google Scholar 

  4. Bennett, C.H., Brassard, G., Crepeau, C., Jozsa, R., Peres, A., Wootters, W.K.: Teleporting an unknown quantum state via dual classical and Einstein–Podolsky–Rosen channels. Phys. Rev. Lett. 70, 1895 (1993)

    ADS  MathSciNet  MATH  Google Scholar 

  5. Bennett, C.H., Wiesner, S.J.: Communication via one- and two-particle operators on Einstein–Podolsky–Rosen states. Phys. Rev. Lett. 69, 2881 (1992)

    Article  ADS  MathSciNet  Google Scholar 

  6. Scarani, V., Lblisdir, S., Gisin, N., Acin, A.: Quantum cloning. Rev. Mod. Phys. 77, 1225 (2005). arXiv:quant-ph/0511088 and references therein

    Article  ADS  MathSciNet  Google Scholar 

  7. Ekert, A.K.: Quantum cryptography based on Bell’s theorem. Phys. Rev. Lett. 67, 661 (1991)

    Article  ADS  MathSciNet  Google Scholar 

  8. Kollmitzer, C., Pivk, M.: Applied Quantum Cryptography. Springer, Heidelberg (2010)

    Book  Google Scholar 

  9. Wang, K., Wang, X., Zhan, X., Bian, Z., Li, J., Sanders, B.C., Xue, P.: Entanglement-enhanced quantum metrology in a noisy environment. Phys. Rev. A 97, 042112 (2018). arXiv:1707.08790

    Article  ADS  Google Scholar 

  10. Vidal, G.: Efficient classical simulation of slightly entangled quantum computations. Phys. Rev. Lett. 91, 147902 (2003). arXiv:quant-ph/0301063

    Article  ADS  Google Scholar 

  11. Ladd, T.D., Jelezko, F., Laflamme, R., Nakamura, Y., Monroe, C., O’Brien, J.L.: Quantum computers. Nature 464, 45 (2010). arXiv:1009.2267

    Article  ADS  Google Scholar 

  12. Ghernaouti-Helie, S., Tashi, I., Laenger, T., Monyk, C.: SECOQC business white paper. arXiv:0904.4073

  13. Zurek, W.H.: Decoherence, einselection, and the quantum origins of the classical. Rev. Mod. Phys. 75, 715 (2003). arXiv:quant-ph/0105127

    Article  ADS  MathSciNet  Google Scholar 

  14. Yu, T., Eberly, J.H.: Finite-time disentanglement via spontaneous emission. Phys. Rev. Lett. 93, 140404 (2004). arXiv:quant-ph/0404161

    Article  ADS  Google Scholar 

  15. Yu, T., Eberly, J.H.: Sudden death of entanglement: classical noise effects. Opt. Commun. 264, 393 (2006). arXiv:quant-ph/0602196

    Article  ADS  Google Scholar 

  16. Yu, T., Eberly, J.H.: Quantum open system theory: bipartite aspects. Phys. Rev. Lett. 97, 140403 (2006). arXiv:quant-ph/0603256

    Article  ADS  Google Scholar 

  17. Yu, T., Eberly, J.H.: Sudden Death of Entanglement. Science 323, 598 (2009). arXiv:0910.1396

    Article  ADS  MathSciNet  Google Scholar 

  18. Almeida, M.P., et al.: Environment-induced sudden death of entanglement. Science 316, 579 (2007). arXiv:quant-ph/0701184

    Article  ADS  Google Scholar 

  19. Park, D.K.: Tripartite entanglement dynamics in the presence of Markovian or non-Markovian environment. Quant. Inf. Proc. 15, 3189 (2016). arXiv:1601.00273

    Article  MathSciNet  Google Scholar 

  20. Park, D.K.: Thermal entanglement and thermal discord in two-qubit Heisenberg XYZ chain with Dzyaloshinskii–Moriya interactions. Quant. Inf. Process. 18, 172 (2019). arXiv:1901.06165

    Article  ADS  MathSciNet  Google Scholar 

  21. Hill, S., Wootters, W.K.: Entanglement of a Pair of quantum bits. Phys. Rev. Lett. 78, 5022 (1997). arXiv:quant-ph/9703041

    Article  ADS  Google Scholar 

  22. Wootters, W.K.: Entanglement of formation of an arbitrary state of two qubits. Phys. Rev. Lett. 80, 2245 (1998). arXiv:quant-ph/9709029

    Article  ADS  Google Scholar 

  23. Dzyaloshinsky, I.: A thermodynamic theory of weak ferromagnetism of antiferromagnetics. J. Phys. Chem. Solids 4, 241 (1958)

    Article  ADS  Google Scholar 

  24. Moriya, T.: Anisotropic superexchange interaction and weak ferromagnetism. Phys. Rev. 120, 91 (1960)

    Article  ADS  Google Scholar 

  25. Peres, A.: Separability criterion for density matrices. Phys. Rev. Lett. 77, 1413 (1996). arXiv:quant-ph/9604005

    Article  ADS  MathSciNet  Google Scholar 

  26. Horodecki, M., Horodecki, P., Horodecki, R.: Separability of mixed states: necessary and sufficient conditions. Phys. Lett. 223, 1 (1996). arXiv:quant-ph/9605038

    Article  MathSciNet  Google Scholar 

  27. Horodecki, P.: Separability criterion and inseparable mixed states with positive partial transposition. Phys. Lett. A 232, 333 (1997). arXiv:quant-ph/9703004

    Article  ADS  MathSciNet  Google Scholar 

  28. Duan, L.M., Giedke, G., Cirac, J.I., Zoller, P.: Inseparability criterion for continuous variable systems. Phys. Rev. Lett. 84, 2722 (2000). arXiv:quant-ph/9908056

    Article  ADS  Google Scholar 

  29. Simon, R.: Peres–Horodecki separability criterion for continuous variable systems. Phys. Rev. Lett. 84, 2726 (2000). arXiv:quant-ph/9909044

    Article  ADS  Google Scholar 

  30. Vida, G., Werner, R.F.: A computable measure of entanglement. Phys. Rev. A 65, 032314 (2002). arXiv:quant-ph/0102117

    Article  ADS  Google Scholar 

  31. Feynman, R.P., Hibbs, A.R.: Quantum Mechanics and Path Integrals. McGraw-Hill, New York (1965)

    MATH  Google Scholar 

  32. Kleinert, H.: Path integrals in Quantum Mechanics, Statistics, and Polymer Physics. World Scientific, Singapore (1995)

    Book  Google Scholar 

  33. Lewis Jr., H.R., Riesenfeld, W.B.: An exact quantum theory of the time-dependent harmonic oscillator and of a charged particle in a time-dependent electromagnetic field. J. Math. Phys. 10, 1458 (1969)

    Article  ADS  MathSciNet  Google Scholar 

  34. Lohe, M.A.: Exact time dependence of solutions to the time-dependent Schrödinger equation. J. Phys. A: Math. Theor. 42, 035307 (2009)

    Article  ADS  Google Scholar 

  35. Pinney, E.: The nonlinear differential equation. Proc. Am. Math. Soc. 1, 681 (1950)

    MathSciNet  MATH  Google Scholar 

  36. Prudnikov, A.P., Brychkov, Y.A., Marichev, O.I.: Integrals and Series. Gordon and Breach Science Publishers, New York (1983)

    MATH  Google Scholar 

  37. Abramowitz, M., Stegun, I.A.: Handbook of Mathematical Functions. Dover Publications, New York (1972)

    MATH  Google Scholar 

  38. Bennett, C.H., DiVincenzo, D.P., Smokin, J.A., Wootters, W.K.: Mixed-state entanglement and quantum error correction. Phys. Rev. A 54, 3824 (1996). arXiv:quant-ph/9604024

    Article  ADS  MathSciNet  Google Scholar 

  39. Uhlmann, A.: Fidelity and concurrence of conjugate states. Phys. Rev. A 62, 032307 (2000). arXiv:quant-ph/9909060

    Article  ADS  MathSciNet  Google Scholar 

  40. Duan, L.M., Giedke, G., Cirac, J.I., Zoller, P.: Entanglement purification of Gaussian variable quantum states. Phys. Rev. Lett. 84, 4002 (2000). arXiv:quant-ph/9912017

    Article  ADS  Google Scholar 

  41. Giedke, G., Duan, L.M., Cirac, J.I., Zoller, P.: All inseparable two-mode Gaussian continuous variable states are distillable. arXiv:quant-ph/0007061

  42. Cramer, M., Eisert, J., Plenio, M.B., Dreißig, J.: Entanglement-area law for general bosonic harmonic lattice systems. Phys. Rev. A 73, 012309 (2006). arXiv:quant-ph/0505092

    Article  ADS  Google Scholar 

  43. Tserkis, S., Onoe, S., Ralph, T.C.: Quantifying entanglement of formation for two-mode Gaussian states: Analytical expressions for upper and lower bounds and numerical estimation of its exact value. Phys. Rev. A 99, 052337 (2019). arXiv:1903.09961

    Article  ADS  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to DaeKil Park.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix A

Appendix A

In this section we examine the eigenvalue equation of the following bipartite Gaussian state:

$$\begin{aligned}&\rho _2 [x_1', x_2': x_1, x_2] \nonumber \\&\quad = A\exp \bigg [ -a_1 (x_1'^2 + x_2'^2) - a_2 (x_1^2 + x_2^2) + 2 b_1 x_1' x_2' + 2 b_2 x_1 x_2 \nonumber \\&\qquad + \,2 c (x_1 x_1' + x_2 x_2') +2 f (x_1 x_2' + x_2 x_1') \bigg ] \end{aligned}$$
(A.1)

where \(A = \sqrt{(a_1 + a_2 - 2c)^2 - (b_1 + b_2 + 2 f)^2} / \pi \). If \(a_1 = \alpha _1\), \(a_2 = \alpha _2\), \(b_1 = \alpha _3\), \(b_2=\alpha _4\), \(c = \alpha _5\), and \(f = \alpha _6\), \(\rho _2\) is exactly the same with the thermal state \(\rho _T\) given in Eq. (3.12). Now let us consider the eigenvalue equation

$$\begin{aligned} \int \mathrm{d}x_1 \mathrm{d}x_2 \rho _2 [x_1', x_2': x_1, x_2] f_{mn} (x_1, x_2) =\lambda _{mn} f_{mn} (x_1', x_2'). \end{aligned}$$
(A.2)

First we change the variables as

$$\begin{aligned} y_1 = \frac{1}{\sqrt{2}} (x_1 + x_2), \qquad y_2 =\frac{1}{\sqrt{2}} (x_1 - x_2). \end{aligned}$$
(A.3)

Then Eq. (A.2) is simplified as

$$\begin{aligned}&A \mathrm{e}^{-(a_1 - b_1) y_1'^2 - (a_1 + b_1) y_2'^2} \int \mathrm{d}y_1 \mathrm{d}y_2 \mathrm{e}^{- (a_2 - b_2) y_1^2 - (a_2 + b_2) y_2^2 + 2 (c + f) y_1' y_1 + 2 (c - f) y_2' y_2} f_{mn} (y_1, y_2)\nonumber \\&\quad = \lambda _{mn} f(y_1', y_2'). \end{aligned}$$
(A.4)

Now, we define

$$\begin{aligned} f_{mn} (y_1, y_2) = g_m (y_1) h_n (y_2). \end{aligned}$$
(A.5)

Then, Eq. (A.4) is solved if one solves the following two single-party eigenvalue equations:

$$\begin{aligned}&\mathrm{e}^{-(a_1 - b_1) y_1'^2} \int \mathrm{d}y_1 \mathrm{e}^{-(a_2 - b_2) y_1^2 + 2 (c + f) y_1' y_1} g_m (y_1) = p_m g_m (y_1')\nonumber \\&\mathrm{e}^{-(a_1 + b_1) y_2'^2} \int \mathrm{d}y_2 \mathrm{e}^{-(a_2 + b_2) y_2^2 + 2 (c - f) y_2' y_2} h_n (y_2) = q_n h_n (y_2'). \end{aligned}$$
(A.6)

The eigenvalue of Eq. (A.2) can be computed as \(\lambda _{mn} = A p_m q_n\).

By making use of Eqs. (2.25) and (2.26) one can show \(\lambda _{mn} = (1 - \xi _1) \xi _1^m (1 - \xi _2) \xi _2^n\), where

$$\begin{aligned} \xi _1&= \frac{2 (c + f)}{(a_1 + a_2 - b_1 - b_2) + \epsilon _1} \nonumber \\&= \frac{\sqrt{(a_1 + a_2 - b_1 - b_2) + 2 (c+f)} -\sqrt{(a_1 + a_2 - b_1 - b_2) - 2 (c+f)}}{\sqrt{(a_1 + a_2 - b_1 - b_2) + 2 (c+f)} + \sqrt{(a_1 + a_2 - b_1 - b_2) - 2 (c+f)}}\nonumber \\ \xi _2&= \frac{2 (c - f)}{(a_1 + a_2 + b_1 + b_2)+ \epsilon _2}\nonumber \\&= \frac{\sqrt{(a_1 + a_2 + b_1 + b_2) + 2 (c-f)} -\sqrt{(a_1 + a_2 + b_1 + b_2) - 2 (c-f)}}{\sqrt{(a_1 + a_2 + b_1 + b_2) + 2 (c-f)} +\sqrt{(a_1 + a_2 + b_1 + b_2) - 2 (c-f)}} \end{aligned}$$
(A.7)

with

$$\begin{aligned} \epsilon _1 = \sqrt{(a_1 + a_2 - b_1 - b_2)^2 -4 (c + f)^2}, \qquad \epsilon _2 = \sqrt{(a_1 + a_2 + b_1 + b_2)^2 -4 (c - f)^2}. \end{aligned}$$
(A.8)

We can also use Eqs. (2.25) and (2.26) to derive the normalized eigenfunction, whose explicit expression is

$$\begin{aligned} f_{mn} (x_1, x_2) = \left( \frac{1}{{\mathcal {C}}_{1,m}} H_m (\sqrt{\epsilon _1} y_1) \mathrm{e}^{-\frac{\alpha _1}{2} y_1^2} \right) \left( \frac{1}{{\mathcal {C}}_{2,n}} H_n (\sqrt{\epsilon _2} y_2) \mathrm{e}^{-\frac{\alpha _2}{2} y_2^2} \right) \end{aligned}$$
(A.9)

where

$$\begin{aligned} \alpha _1 = \epsilon _1 + (a_1 - a_2) - (b_1 - b_2), \qquad \alpha _2 = \epsilon _2 + (a_1 - a_2) + (b_1 - b_2) \end{aligned}$$
(A.10)

and the normalization constants \({\mathcal {C}}_{1,m}\) and \({\mathcal {C}}_{2,n}\) are

$$\begin{aligned}&{\mathcal {C}}_{1,m}^2 = \frac{1}{\sqrt{\alpha _1}} \sum _{k=0}^m 2^{2m - k} \left( \frac{\epsilon _1}{\alpha _1} - 1 \right) ^{m-k} \frac{\Gamma ^2 (m+1) \Gamma (m - k + 1/2)}{\Gamma (k + 1) \Gamma ^2 (m-k+1)}\nonumber \\&{\mathcal {C}}_{2,n}^2 = \frac{1}{\sqrt{\alpha _2}} \sum _{k=0}^n 2^{2n - k} \left( \frac{\epsilon _2}{\alpha _2} - 1 \right) ^{n-k} \frac{\Gamma ^2 (n+1) \Gamma (n - k + 1/2)}{\Gamma (k + 1) \Gamma ^2 (n-k+1)}. \end{aligned}$$
(A.11)

Thus, the spectral decomposition of \(\rho _2\) is

$$\begin{aligned} \rho _2 [x_1', x_2':x_1, x_2] = \sum _{m,n} \lambda _{mn} f_{mn} (x_1', x_2') f_{mn}^* (x_1, x_2), \end{aligned}$$
(A.12)

where \(\lambda _{mn}\) and \(f_{mn}\) are given in Eqs. (A.7) and (A.9), respectively.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Park, D. Thermal entanglement phase transition in coupled harmonic oscillators with arbitrary time-dependent frequencies. Quantum Inf Process 19, 129 (2020). https://doi.org/10.1007/s11128-020-02626-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11128-020-02626-4

Keywords

Navigation