Skip to main content
Log in

Unidimensional continuous-variable measurement-device-independent quantum key distribution

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

Continuous-variable (CV) measurement-device-independent (MDI) quantum key distribution (QKD) is immune to imperfect detection devices, which can eliminate all kinds of attacks on practical detectors. Here we first propose a CV-MDI QKD scheme using unidimensional modulation (UD) in general phase-sensitive channels. The UD CV-MDI QKD protocol is implemented with the Gaussian modulation of a single quadrature of the coherent states prepared by two legitimate senders, aiming to simplify the implementation compared with the standard, symmetrically Gaussian-modulated CV-MDI QKD protocol. Our scheme reduces the complexity of the system since it ignores the requirement in one of the quadrature modulations as well as the corresponding parameter estimations. The security of our proposed scheme is analyzed against collective attacks, and the finite-size analysis under realistic conditions is taken into account. UD CV-MDI QKD shows a comparable performance to that of its symmetric counterpart, which will facilitate the simplification and practical implementation of the CV-MDI QKD protocols.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Bennett, C.H., Brassard, G.: Quantum cryptography: public key distribution and coin tossing. In: Proceedings of the IEEE International Conference on Computers, Systems, and Signal Processing, Bangalore, 10–12 December 1984, pp. 175–179 (1984)

  2. Ekert, A.: Quantum cryptography based on bell’s theorem. Phys. Rev. Lett. 67(6), 661–663 (1991)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  3. Gisin, N., Ribordy, G., Tittel, W., Zbinden, H.: Quantum cryptography. Rev. Mod. Phys. 74(1), 145 (2002)

    Article  ADS  MATH  Google Scholar 

  4. Weedbrook, C., Lance, A.M., Bowen, W.P., Symul, T., Ralph, T.C., Lam, P.K.: Quantum cryptography without switching. Phys. Rev. Lett. 93(17), 170504 (2004)

    Article  ADS  Google Scholar 

  5. Braunstein, S.L., Van Loock, P.: Quantum information with continuous variables. Rev. Mod. Phys. 77(2), 513 (2005)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  6. Scarani, V., Bechmann-Pasquinucci, H., Cerf, N.J., Dušek, M., Lütkenhaus, N., Peev, M.: The security of practical quantum key distribution. Rev. Mod. Phys. 81(3), 1301 (2009)

    Article  ADS  Google Scholar 

  7. Liao, S.K., Cai, W.Q., Liu, W.Y., Zhang, L., Li, Y., Ren, J.G., Yin, J., Shen, Q., Cao, Y., Li, Z.P.: Satellite-to-ground quantum key distribution. Nature 549(7670), 43 (2017)

    Article  ADS  Google Scholar 

  8. Zhang, Y., Li, Z., Chen, Z., Weedbrook, C., Zhao, Y., Wang, X., Huang, Y., Xu, C., Zhang, X., Wang, Z., et al.: Continuous-variable QKD over 50 km commercial fiber. Quantum Sci. Technol. 4(3), 035006 (2019)

    Article  ADS  Google Scholar 

  9. Pirandola, S., Andersen, U., Banchi, L., Berta, M., Bunandar, D., Colbeck, R., Englund, D., Gehring, T., Lupo, C., Ottaviani, C., et al.: Advances in Quantum Cryptography. arXiv preprint arXiv:1906.01645 (2019)

  10. Wootters, W.K., Zurek, W.H.: A single quantum cannot be cloned. Nature 299(5886), 802 (1982)

    Article  ADS  MATH  Google Scholar 

  11. Lo, H.K., Chau, H.F.: Unconditional security of quantum key distribution over arbitrarily long distances. Science 283(5410), 2050–2056 (1999)

    Article  ADS  Google Scholar 

  12. Bang, J.Y., Berger, M.S.: Quantum mechanics and the generalized uncertainty principle. Phys. Rev. D 74(12), 125012 (2006)

    Article  ADS  MathSciNet  Google Scholar 

  13. Ralph, T.C.: Continuous variable quantum cryptography. Phys. Rev. A 61(1), 010303 (1999)

    Article  MathSciNet  Google Scholar 

  14. Grosshans, F., Grangier, P.: Continuous variable quantum cryptography using coherent states. Phys. Rev. Lett. 88(5), 057902 (2002)

    Article  ADS  Google Scholar 

  15. Grosshans, F., Van Assche, G., Wenger, J., Brouri, R., Cerf, N., Grangier, P.: Quantum key distribution using gaussian-modulated coherent states. Nature 421(6920), 238–241 (2003)

    Article  ADS  Google Scholar 

  16. Bai, D., Huang, P., Ma, H., Wang, T., Zeng, G.: Performance improvement of plug-and-play dual-phase-modulated quantum key distribution by using a noiseless amplifier. Entropy 19(10), 546 (2017)

    Article  ADS  Google Scholar 

  17. Liu, W., Huang, P., Peng, J., Fan, J., Zeng, G.: Integrating machine learning to achieve an automatic parameter prediction for practical continuous-variable quantum key distribution. Phys. Rev. A 97(2), 022316 (2018)

    Article  ADS  Google Scholar 

  18. Lo, H.K., Ma, X., Chen, K.: Decoy state quantum key distribution. Phys. Rev. Lett. 94(23), 230504 (2005)

    Article  ADS  Google Scholar 

  19. Xuan, Q.D., Zhang, Z., Voss, P.L.: A 24 km fiber-based discretely signaled continuous variable quantum key distribution system. Opt. Express 17(26), 24244–24249 (2009)

    Article  ADS  Google Scholar 

  20. Lo, H.K., Curty, M., Tamaki, K.: Secure quantum key distribution. Nat. Photon. 8(8), 595 (2014)

    Article  ADS  Google Scholar 

  21. Cerf, N.J., Levy, M., Van Assche, G.: Quantum distribution of Gaussian keys using squeezed states. Phys. Rev. A 63(5), 052311 (2001)

    Article  ADS  Google Scholar 

  22. Gottesman, D., Preskill, J.: Secure quantum key distribution using squeezed states. In: Quantum Information with Continuous Variables, pp. 317–356. Springer, Berlin (2003)

  23. García-Patrón, R., Cerf, N.J.: Continuous-variable quantum key distribution protocols over noisy channels. Phys. Rev. Lett. 102(13), 130501 (2009)

    Article  ADS  Google Scholar 

  24. Fossier, S., Diamanti, E., Debuisschert, T., Villing, A., Tualle-Brouri, R., Grangier, P.: Field test of a continuous-variable quantum key distribution prototype. N. J. Phys. 11(4), 045023 (2009)

    Article  Google Scholar 

  25. Weedbrook, C., Pirandola, S., Garciapatron, R., Cerf, N., Ralph, T.C., Shapiro, J.H., Lloyd, S.: Gaussian quantum information. Rev. Mod. Phys. 84(2), 621–669 (2012)

    Article  ADS  Google Scholar 

  26. Jouguet, P., Kunzjacques, S., Leverrier, A., Grangier, P., Diamanti, E.: Experimental demonstration of long-distance continuous-variable quantum key distribution. Nat. Photon. 7(5), 378–381 (2013)

    Article  ADS  Google Scholar 

  27. Kumar, R., Qin, H., Alléaume, R.: Coexistence of continuous variable QKD with intense dwdm classical channels. New J. Phys. 17(4), 043027 (2015)

    Article  ADS  Google Scholar 

  28. Shen, S.Y., Dai, M.W., Zheng, X.T., Sun, Q.Y., Guo, G.C., Han, Z.F.: Free-space continuous-variable quantum key distribution of unidimensional Gaussian modulation using polarized coherent states in an urban environment. Phys. Rev. A 100(1), 012325 (2019)

    Article  ADS  Google Scholar 

  29. Zhang, G., Haw, J., Cai, H., Xu, F., Assad, S., Fitzsimons, J., Zhou, X., Zhang, Y., Yu, S., Wu, J., et al.: An integrated silicon photonic chip platform for continuous-variable quantum key distribution. Nat. Photon. 13(12), 839–842 (2019)

    Article  ADS  Google Scholar 

  30. Garcia-Patron, R., Cerf, N.J.: Unconditional optimality of Gaussian attacks against continuous-variable quantum key distribution. Phys. Rev. Lett. 97(19), 190503 (2006)

    Article  ADS  Google Scholar 

  31. Navascués, M., Grosshans, F., Acin, A.: Optimality of Gaussian attacks in continuous-variable quantum cryptography. Phys. Rev. Lett. 97(19), 190502 (2006)

    Article  ADS  Google Scholar 

  32. Furrer, F., Franz, T., Berta, M., Leverrier, A., Scholz, V.B., Tomamichel, M., Werner, R.F.: Continuous variable quantum key distribution: finite-key analysis of composable security against coherent attacks. Phys. Rev. Lett. 109(10), 100502 (2012)

    Article  ADS  Google Scholar 

  33. Leverrier, A., García-Patrón, R., Renner, R., Cerf, N.J.: Security of continuous-variable quantum key distribution against general attacks. Phys. Rev. Lett. 110(3), 030502 (2013)

    Article  ADS  Google Scholar 

  34. Leverrier, A., Grosshans, F., Grangier, P.: Finite-size analysis of a continuous-variable quantum key distribution. Phys. Rev. A 81(6), 062343 (2010)

    Article  ADS  Google Scholar 

  35. Jouguet, P., Kunz-Jacques, S., Diamanti, E., Leverrier, A.: Analysis of imperfections in practical continuous-variable quantum key distribution. Phys. Rev. A 86(3), 032309 (2012)

    Article  ADS  Google Scholar 

  36. Leverrier, A.: Composable security proof for continuous-variable quantum key distribution with coherent states. Phys. Rev. Lett. 114(7), 070501 (2015)

    Article  ADS  Google Scholar 

  37. Lodewyck, J., Bloch, M., García-Patrón, R., Fossier, S., Karpov, E., Diamanti, E., Debuisschert, T., Cerf, N.J., Tualle-Brouri, R., McLaughlin, S.W., et al.: Quantum key distribution over 25 km with an all-fiber continuous-variable system. Phys. Rev. A 76(4), 042305 (2007)

    Article  ADS  Google Scholar 

  38. Qi, B., Lougovski, P., Pooser, R., Grice, W., Bobrek, M.: Generating the local oscillator “locally” in continuous-variable quantum key distribution based on coherent detection. Phys. Rev. X 5(4), 041009 (2015)

    Google Scholar 

  39. Wang, T., Huang, P., Zhou, Y., Liu, W., Ma, H., Wang, S., Zeng, G.: High key rate continuous-variable quantum key distribution with a real local oscillator. Opt. Express 26(3), 2794–2806 (2018)

    Article  ADS  Google Scholar 

  40. Jouguet, P., Kunz-Jacques, S., Debuisschert, T., Fossier, S., Diamanti, E., Alléaume, R., Tualle-Brouri, R., Grangier, P., Leverrier, A., Pache, P., et al.: Field test of classical symmetric encryption with continuous variables quantum key distribution. Opt. Express 20(13), 14030–14041 (2012)

    Article  ADS  Google Scholar 

  41. Huang, D., Huang, P., Li, H., Wang, T., Zhou, Y., Zeng, G.: Field demonstration of a continuous-variable quantum key distribution network. Opt. Lett. 41(15), 3511–3514 (2016)

    Article  ADS  Google Scholar 

  42. Huang, D., Huang, P., Lin, D., Zeng, G.: Long-distance continuous-variable quantum key distribution by controlling excess noise. Sci. Rep. 6(1), 19201–19201 (2016)

    Article  ADS  Google Scholar 

  43. Gerhardt, I., Liu, Q., Lamas-Linares, A., Skaar, J., Kurtsiefer, C., Makarov, V.: Full-field implementation of a perfect eavesdropper on a quantum cryptography system. Nat. Commun. 2, 349 (2011)

    Article  ADS  Google Scholar 

  44. Ma, X.C., Sun, S.H., Jiang, M.S., Liang, L.M.: Local oscillator fluctuation opens a loophole for Eve in practical continuous-variable quantum-key-distribution systems. Phys. Rev. A 88(2), 290–296 (2013)

    Article  Google Scholar 

  45. Jouguet, P., Kunzjacques, S., Diamanti, E.: Preventing calibration attacks on the local oscillator in continuous-variable quantum key distribution. Phys. Rev. A 87(6), 4996–4996 (2013)

    Article  Google Scholar 

  46. Qin, H., Kumar, R., Alléaume, R.: Saturation attack on continuous-variable quantum key distribution system. In: Emerging Technologies in Security and Defence; and Quantum Security II; and Unmanned Sensor Systems X, vol. 8899, p. 88990N. International Society for Optics and Photonics (2013)

  47. Qin, H., Kumar, R., Makarov, V., Alléaume, R.: Homodyne-detector-blinding attack in continuous-variable quantum key distribution. Phys. Rev. A 98, 012312 (2018)

    Article  Google Scholar 

  48. Lo, H., Curty, M., Qi, B.: Measurement-device-independent quantum key distribution. Phys. Rev. Lett. 108(13), 130503 (2012)

    Article  ADS  Google Scholar 

  49. Braunstein, S.L., Pirandola, S.: Side-channel-free quantum key distribution. Phys. Rev. Lett. 108(13), 130502 (2012)

    Article  ADS  Google Scholar 

  50. Pirandola, S., Ottaviani, C., Spedalieri, G., Weedbrook, C., Braunstein, S.L., Lloyd, S., Gehring, T., Jacobsen, C.S., Andersen, U.L.: High-rate measurement-device-independent quantum cryptography. Nat. Photonics 9(6), 397–402 (2015)

    Article  ADS  Google Scholar 

  51. Ma, X.C., Sun, S.H., Jiang, M.S., Gui, M., Liang, L.M.: Gaussian-modulated coherent-state measurement-device-independent quantum key distribution. Phys. Rev. A 89(4), 4089–4091 (2013)

    Google Scholar 

  52. Li, Z., Zhang, Y., Xu, F., Peng, X., Guo, H.: Continuous-variable measurement-device-independent quantum key distribution. Phys. Rev. A 89(5), 052301 (2014)

    Article  ADS  Google Scholar 

  53. Zhang, Y.C., Li, Z., Yu, S., Gu, W., Peng, X., Guo, H.: Continuous-variable measurement-device-independent quantum key distribution using squeezed states. Phys. Rev. A 90(5), 052325 (2014)

    Article  ADS  Google Scholar 

  54. Ma, H.X., Huang, P., Bai, D.Y., Wang, S.Y., Bao, W.S., Zeng, G.H.: Continuous-variable measurement-device-independent quantum key distribution with photon subtraction. Phys. Rev. A 97(4), 042329 (2018)

    Article  ADS  Google Scholar 

  55. Zhao, Y., Zhang, Y., Xu, B., Yu, S., Guo, H.: Continuous-variable measurement-device-independent quantum key distribution with virtual photon subtraction. Phys. Rev. A 97(4), 042328 (2018)

    Article  ADS  Google Scholar 

  56. Wang, Y., Wang, X., Li, J., Huang, D., Zhang, L., Guo, Y.: Self-referenced continuous-variable measurement-device-independent quantum key distribution. Phys. Lett. A 382(17), 1149–1156 (2018)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  57. Yin, H.L., Zhu, W., Fu, Y.: Phase self-aligned continuous-variable measurement-device-independent quantum key distribution. Sci. Rep. 9(1), 49 (2019)

    Article  ADS  Google Scholar 

  58. Ma, H.X., Huang, P., Bai, D.Y., Wang, T., Wang, S.Y., Bao, W.S., Zeng, G.H.: Long-distance continuous-variable measurement-device-independent quantum key distribution with discrete modulation. Phys. Rev. A 99(2), 022322 (2019)

    Article  ADS  Google Scholar 

  59. Bai, D., Huang, P., Ma, H., Wang, T., Zeng, G.: Passive state preparation in continuous-variable measurement-device-independent quantum key distribution. J. Phys. B 52(13), 135502 (2019)

    Article  ADS  Google Scholar 

  60. Papanastasiou, P., Ottaviani, C., Pirandola, S.: Finite-size analysis of measurement-device-independent quantum cryptography with continuous variables. Phys. Rev. A 96(4), 042332 (2017)

    Article  ADS  Google Scholar 

  61. Zhang, X., Zhang, Y., Zhao, Y., Wang, X., Yu, S., Guo, H.: Finite-size analysis of continuous-variable measurement-device-independent quantum key distribution. Phys. Rev. A 96(4), 042334 (2017)

    Article  ADS  Google Scholar 

  62. Lupo, C., Ottaviani, C., Papanastasiou, P., Pirandola, S.: Continuous-variable measurement-device-independent quantum key distribution: composable security against coherent attacks. Phys. Rev. A 97(5), 052327 (2018)

    Article  ADS  Google Scholar 

  63. Chen, Z., Zhang, Y., Wang, G., Li, Z., Guo, H.: Composable security analysis of continuous-variable measurement-device-independent quantum key distribution with squeezed states for coherent attacks. Phys. Rev. A 98(1), 012314 (2018)

    Article  ADS  Google Scholar 

  64. Usenko, V.C., Grosshans, F.: Unidimensional continuous-variable quantum key distribution. Phys. Rev. A 92(6), 062337 (2015)

    Article  ADS  MathSciNet  Google Scholar 

  65. Wang, P., Wang, X., Li, J., Li, Y.: Finite-size analysis of unidimensional continuous-variable quantum key distribution under realistic conditions. Opt. Express 25(23), 27995–28009 (2017)

    Article  ADS  Google Scholar 

  66. Liao, Q., Guo, Y., Xie, C., Huang, D., Huang, P., Zeng, G.: Composable security of unidimensional continuous-variable quantum key distribution. Quantum Inf. Process. 17(5), 113 (2018)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  67. Wang, P., Wang, X., Li, Y.: Security analysis of unidimensional continuous-variable quantum key distribution using uncertainty relations. Entropy 20(3), 157 (2018)

    Article  ADS  Google Scholar 

  68. Wang, X., Liu, W., Wang, P., Li, Y.: Experimental study on all-fiber-based unidimensional continuous-variable quantum key distribution. Phys. Rev. A 95(6), 062330 (2017)

    Article  ADS  Google Scholar 

  69. Renner, R., Cirac, J.I.: De finetti representation theorem for infinite-dimensional quantum systems and applications to quantum cryptography. Phys. Rev. Lett. 102(11), 110504 (2009)

    Article  ADS  Google Scholar 

  70. Fossier, S., Diamanti, E., Debuisschert, T., Tuallebrouri, R., Grangier, P.: Improvement of continuous-variable quantum key distribution systems by using optical preamplifiers. J. Phys. B 42(11), 114014 (2009)

    Article  ADS  Google Scholar 

  71. Wilde, M.M., Tomamichel, M., Berta, M.: Converse bounds for private communication over quantum channels. IEEE Trans. Inf. Theory 63(3), 1792–1817 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  72. Pirandola, S., Laurenza, R., Ottaviani, C., Banchi, L.: Fundamental limits of repeaterless quantum communications. Nat. Commun. 8, 15043 (2017)

    Article  ADS  Google Scholar 

  73. Ruppert, L., Usenko, V.C., Filip, R.: Long-distance continuous-variable quantum key distribution with efficient channel estimation. Phys. Rev. A 90(6), 062310 (2014)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Key Research and Development Program (Grant No. 2016YFA0302600), the National Natural Science Foundation of China (Grants Nos. 61332019, 61671287, 61631014), and the National Key Research and Development Program of China (Grant No. 2013CB338002).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Peng Huang or Yiqun Zhu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix A: The derivation of displacement parameters of the two quadratures

Appendix A: The derivation of displacement parameters of the two quadratures

After the eavesdropper performs one-mode attack, modes \(A'\) and \(B'\) can be obtained as:

$$\begin{aligned} A'= & {} \sqrt{\eta _{A}}A_{2} + \sqrt{1 - \eta _{A}}E_{A}, \end{aligned}$$
(29)
$$\begin{aligned} B'= & {} \sqrt{\eta _{B}}B_{2} + \sqrt{1 - \eta _{B}}E_{B}. \end{aligned}$$
(30)

where we assume \(\eta _{A,x}, \eta _{A,p} = \eta _{A}\) and \(\eta _{B,x}, \eta _{B,p} = \eta _{B}\). Modes \(A'\) and \(B'\) interfere on the balanced BS with output modes C and D as:

$$\begin{aligned} C= & {} \frac{1}{\sqrt{2}}(A' - B') = \frac{1}{\sqrt{2}}(\sqrt{\eta _{A}}A_{2} - \sqrt{\eta _{B}}B_{2}) + \frac{1}{\sqrt{2}}(\sqrt{1 - \eta _{A}}E_{A} - \sqrt{1 - \eta _{B}}E_{B}), \end{aligned}$$
(31)
$$\begin{aligned} D= & {} \frac{1}{\sqrt{2}}(A' + B') = \frac{1}{\sqrt{2}}(\sqrt{\eta _{A}}A_{2} + \sqrt{\eta _{B}}B_{2}) + \frac{1}{\sqrt{2}}(\sqrt{1 - \eta _{A}}E_{A} + \sqrt{1 - \eta _{B}}E_{B}). \end{aligned}$$
(32)

After the displacement operation, the quadratures of mode \(B^{'}_{1}\) can be described as \(B^{'}_{1,x} = B_{1,x} + gC_{x}\) and \(B^{'}_{1,p} = B_{1,p} + gD_{p}\).

The variance of mode \(B^{'}_{1,x}\) can be calculated as:

$$\begin{aligned} \langle |B^{'}_{1,x}|^{2} \rangle= & {} V_{B} + \frac{g_{x}^{2}\eta _{B}}{2}V_{B}^{2} - 2g_{x}\frac{\eta _{B}}{\sqrt{2}}\sqrt{V_{B}(V_{B}^{2} - 1)} \nonumber \\&+ \frac{g_{x}^{2}\eta _{A}}{2} + \frac{g_{x}^{2}}{2}(\eta _{A}\chi _{A} + \eta _{B}\chi _{B}) \end{aligned}$$
(33)

Let \(T_{A,x} = \frac{g_{x}^{2}\eta _{A}}{2}\), Eq. (33) can be rewritten as:

$$\begin{aligned} \langle |B^{'}_{1,x}|^{2} \rangle= & {} T_{A,x}(V_{A}^{2} - 1) + 1 + T_{A,x}\left( 1 + \frac{\eta _{A}\chi _{A} + \eta _{B}\chi _{B}}{\eta _{A}}\right) \nonumber \\&+ \frac{2T_{A,x}}{\eta _{A}}\left( \frac{V_{B} - 1}{g_{x}^{2}} + \frac{\eta _{B}V_{B}^{2}}{2} - \frac{\sqrt{2\eta _{B}V_{B}(V_{B}^{2} - 1)}}{g_{x}}\right) . \end{aligned}$$
(34)

To minimize the equivalent excess noise from mode \(B^{'}_{1,x}\), we can choose the displacement parameter \(g_{x}\) as:

$$\begin{aligned} g_{x} = \sqrt{\frac{2}{\eta _{B}V_{B}}}\cdot \sqrt{\frac{V_{B} - 1}{V_{B} + 1}}. \end{aligned}$$
(35)

with the minimized equivalent excess noise \(\epsilon _{x,\hbox {mim}} = 1 + \chi _{A} + \frac{\eta _{B}}{\eta _{A}}(\chi _{B} - V_{B})\).

Similarly, the variance of mode \(B^{'}_{1,p}\) can be calculated as:

$$\begin{aligned} \langle |B^{'}_{1,p}|^{2} \rangle= & {} V_{B} + g^{2}_{p}\cdot \frac{\eta _{B}}{2} - 2g_{p}\sqrt{\frac{\eta _{B}(V^{2}_{B} - 1)}{2V_{B}}} \nonumber \\&+ g^{2}_{p}\frac{\eta _{A}}{2} + \frac{g^{2}_{p}}{2}(\eta _{A}\chi _{A} + \eta _{B}\chi _{B}). \end{aligned}$$
(36)

Let \(T_{A,p} = \frac{g^{2}_{p}\eta _{A}}{2}\), Eq. (36) can be rewritten as:

$$\begin{aligned} \langle |B^{'}_{1,p}|^{2} \rangle= & {} 1 + T_{A,p}\left( 1 + \frac{1}{\eta _{A}}(\eta _{A}\chi _{A} + \eta _{B}\chi _{B})\right) \nonumber \\&+ \frac{2T_{A,p}}{\eta _{A}}\left( \frac{V_{B}-1}{g^{2}_{p}} + \frac{\eta _{B}}{2} - \frac{\sqrt{\frac{2\eta _{B}(V^{2}_{B}-1)}{V_{B}}}}{g_{p}} \right) . \end{aligned}$$
(37)

To minimize the equivalent excess noise from mode \(B'_{1,p}\), we can choose the displacement parameter \(g_{p}\) as:

$$\begin{aligned} g_{p} = \sqrt{\frac{2V_{B}(V_{B} - 1)}{\eta _{B}(V_{B} + 1)}}. \end{aligned}$$
(38)

with the minimized equivalent excess noise \(\epsilon _{p,\hbox {min}} = 1 + \chi _{A} + \frac{\eta _{B}}{\eta _{A}}\left( \chi _{B} - \frac{1}{V_{B}}\right) \).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bai, D., Huang, P., Zhu, Y. et al. Unidimensional continuous-variable measurement-device-independent quantum key distribution. Quantum Inf Process 19, 53 (2020). https://doi.org/10.1007/s11128-019-2546-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11128-019-2546-5

Keywords

Navigation