Skip to main content
Log in

A verifiable framework of entanglement-free quantum secret sharing with information-theoretical security

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

Quantum secret sharing (QSS) schemes without entanglement have huge advantages in scalability and are easier to realize as they only require sequential communications of a single quantum system. However, these schemes often come with drawbacks such as exact (nn) structure, security flaws and absences of effective cheating detections. To address these problems, we propose a verifiable framework by utilizing entanglement-free states to construct (tn)-QSS schemes. Our work is the heuristic step toward information-theoretical security in entanglement-free QSS, and it sheds light on how to establish effective verification mechanism against cheating. As a result, the proposed framework has a significant importance in constructing QSS schemes for versatile applications in quantum networks due to its intrinsic scalability, flexibility and information-theoretical security.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Shamir, A.: How to share a secret. Commun. ACM 22(11), 612–613 (1979)

    MathSciNet  MATH  Google Scholar 

  2. Blakley, G.R. et al.: Safeguarding cryptographic keys. In: Proceedings of the National Computer Conference, vol. 48 (1979)

  3. Harn, L.: Group authentication. IEEE Trans. Comput. 62(9), 1893–1898 (2012)

    MathSciNet  MATH  Google Scholar 

  4. Boldyreva, A.: Threshold signatures, multisignatures and blind signatures based on the gap-diffie-hellman-group signature scheme. In: International Workshop on Public Key Cryptography, pp. 31–46. Springer, Heidelberg (2003)

    Google Scholar 

  5. Harn, L.: Group-oriented (t, n) threshold digital signature scheme and digital multisignature. IEEE Proc. Comput. Digit. Tech. 141(5), 307–313 (1994)

    MATH  Google Scholar 

  6. Liu, Y.-N., Harn, L., Mao, L., Xiong, Z.: Full-healing group-key distribution in online social networks. Int. J. Secur. Netw. 11(1–2), 12–24 (2016)

    Google Scholar 

  7. Desmedt, Y.G.: Threshold cryptography. Eur. Trans. Telecommun. 5(4), 449–458 (1994)

    Google Scholar 

  8. Patel, K.: Secure multiparty computation using secret sharing. In: 2016 International Conference on Signal Processing, Communication, Power and Embedded System (SCOPES), pp. 863–866. IEEE, Piscataway (2016)

  9. Shor P. W.: Algorithms for quantum computation: discrete logarithms and factoring. In: Proceedings of the 35th Annual Symposium on Foundations of Computer Science, pp. 124–134. IEEE, Piscataway (1994)

  10. Grover, L.K.: Quantum mechanics helps in searching for a needle in a haystack. Phys. Rev. Lett. 79(2), 325 (1997)

    ADS  Google Scholar 

  11. Wootters, W.K., Zurek, W.H.: A single quantum cannot be cloned. Nature 299(5886), 802 (1982)

    ADS  MATH  Google Scholar 

  12. Dieks, D.G.B.J.: Communication by epr devices. Phys. Lett. A 92(6), 271–272 (1982)

    ADS  Google Scholar 

  13. Cleve, R., Gottesman, D., Lo, H.-K.: How to share a quantum secret. Phys. Rev. Lett. 83(3), 648 (1999)

    ADS  Google Scholar 

  14. Hillery, M., Bužek, V., Berthiaume, A.: Quantum secret sharing. Phys. Rev. A 59(3), 1829 (1999)

    ADS  MathSciNet  MATH  Google Scholar 

  15. Karlsson, A., Koashi, M., Imoto, N.: Quantum entanglement for secret sharing and secret splitting. Phys. Rev. A 59(1), 162 (1999)

    ADS  Google Scholar 

  16. Zhang, Z., Man, Z.: Multiparty quantum secret sharing of classical messages based on entanglement swapping. Phys. Rev. A 72(2), 022303 (2005)

    ADS  MathSciNet  Google Scholar 

  17. Gottesman, D.: Theory of quantum secret sharing. Phys. Rev. A 61(4), 042311 (2000)

    ADS  MathSciNet  Google Scholar 

  18. Yao, F., Yin, H.-L., Chen, T.-Y., Chen, Z.-B.: Long-distance measurement-device-independent multiparty quantum communication. Phys. Rev. Lett. 114(9), 090501 (2015)

    Google Scholar 

  19. Marin, A., Markham, D.: Equivalence between sharing quantum and classical secrets and error correction. Phys. Rev. A 88(4), 042332 (2013)

    ADS  Google Scholar 

  20. He, G.P., Bai, Y.-K.: Quantum secret sharing based on smolin states alone. J. Phys. A: Math. Theor. 41(41), 415304 (2008)

    ADS  MathSciNet  MATH  Google Scholar 

  21. Chen, Y.-A., Zhang, A.-N., Zhao, Z., Zhou, X.-Q., Chao-Yang, L., Peng, C.-Z., Yang, T., Pan, J.-W.: Experimental quantum secret sharing and third-man quantum cryptography. Phys. Rev. Lett. 95(20), 200502 (2005)

    ADS  Google Scholar 

  22. Wang, X.-L., Chen, L.-K., Li, W., Huang, H.-L., Liu, C., Chen, C., Luo, Y.-H., Su, Z.-E., Wu, D., Li, Z.-D., et al.: Experimental ten-photon entanglement. Phys. Rev. Lett. 117(21), 210502 (2016)

    ADS  Google Scholar 

  23. Unruh, W.G.: Maintaining coherence in quantum computers. Phys. Rev. A 51(2), 992 (1995)

    ADS  Google Scholar 

  24. Schmid, C., Trojek, P., Bourennane, M., Kurtsiefer, C., Żukowski, M., Weinfurter, H.: Experimental single qubit quantum secret sharing. Phys. Rev. Lett. 95(23), 230505 (2005)

    ADS  Google Scholar 

  25. Tavakoli, A., Herbauts, I., Żukowski, M., Bourennane, M.: Secret sharing with a single d-level quantum system. Phys. Rev. A 92(3), 030302 (2015)

    ADS  Google Scholar 

  26. Karimipour, V., Asoudeh, M.: Quantum secret sharing and random hopping: using single states instead of entanglement. Phys. Rev. A 92(3), 030301 (2015)

    ADS  MathSciNet  Google Scholar 

  27. Changbin, L., Miao, F., Hou, J., Meng, K.: Verifiable threshold quantum secret sharing with sequential communication. Quantum Inf. Process. 17(11), 310 (2018)

    ADS  MathSciNet  MATH  Google Scholar 

  28. Bai, C.-M., Li, Z.-H., Li, Y.-M.: Sequential quantum secret sharing using a single qudit. Commun. Theory Phys. 69(5), 513 (2018)

    ADS  MathSciNet  Google Scholar 

  29. He, G.P.: Comment on experimental single qubit quantum secret sharing. Phys. Rev. Lett. 98(2), 028901 (2007)

    ADS  Google Scholar 

  30. Lin, S., Guo, G.-D., Yong-Zhen, X., Sun, Y., Liu, X.-F.: Cryptanalysis of quantum secret sharing with d-level single particles. Phys. Rev. A 93(6), 062343 (2016)

    ADS  Google Scholar 

  31. McEliece, R.J., Sarwate, D.V.: On sharing secrets and reed-solomon codes. Commun. ACM 24(9), 583–584 (1981)

    MathSciNet  Google Scholar 

  32. Massey, J. L.: Minimal codewords and secret sharing. In: Proceedings of the 6th Joint Swedish-Russian International Workshop on Information Theory, pp. 276–279. Citeseer (1993)

  33. Asmuth, C., Bloom, J.: A modular approach to key safeguarding. IEEE Trans. Inf. Theory 29(2), 208–210 (1983)

    MathSciNet  Google Scholar 

  34. Mignotte, M.: How to share a secret. In: Workshop on Cryptography, pp. 371–375. Springer, Heidelberg (1982)

  35. Thas, K.: The geometry of generalized pauli operators of n-qudit hilbert space, and an application to mubs. Europhys. Lett. 86(6), 60005 (2009)

    ADS  Google Scholar 

  36. Kent, A.: Unconditionally secure bit commitment by transmitting measurement outcomes. Phys. Rev. Lett. 109(13), 130501 (2012)

    ADS  Google Scholar 

  37. Ioannis Kogias, Y., Xiang, Q.H., Adesso, G.: Unconditional security of entanglement-based continuous-variable quantum secret sharing. Phys. Rev. A 95(1), 012315 (2017)

    ADS  Google Scholar 

  38. Gao, F., Qin, S.-J., Wen, Q.-Y., Zhu, F.-C.: A simple participant attack on the Brádler–Dušek protocol. Quantum Inf. Comput. 7(4), 329–334 (2007)

    MathSciNet  MATH  Google Scholar 

  39. Qin, H., Zhu, X., Dai, Y.: (t, n) Threshold quantum secret sharing using the phase shift operation. Quantum Inf. Process. 14(8), 2997–3004 (2015)

    ADS  MathSciNet  MATH  Google Scholar 

  40. Tittel, W., Zbinden, H., Gisin, N.: Experimental demonstration of quantum secret sharing. Phys. Rev. A 63(4), 042301 (2001)

    ADS  Google Scholar 

  41. Deng, F.-G., Long, G.L., Zhou, H.-Y.: An efficient quantum secret sharing scheme with Einstein–Podolsky–Rosen pairs. Phys. Lett. A 340(1–4), 43–50 (2005)

    ADS  MATH  Google Scholar 

  42. Yu, I.-C., Lin, F.-L., Huang, C.-Y.: Quantum secret sharing with multilevel mutually (un) biased bases. Phys. Rev. A 78(1), 012344 (2008)

    ADS  Google Scholar 

  43. Bagherinezhad, S., Karimipour, V.: Quantum secret sharing based on reusable Greenberger–Horne–Zeilinger states as secure carriers. Phys. Rev. A 67(4), 044302 (2003)

    ADS  Google Scholar 

  44. Lance, A.M., Symul, T., Bowen, W.P., Tyc, T., Sanders, B.C., Lam, P.K.: Continuous variable (2, 3) threshold quantum secret sharing schemes. New J. Phys. 5(1), 4 (2003)

    ADS  MathSciNet  Google Scholar 

  45. Lau, H.-K., Weedbrook, C.: Quantum secret sharing with continuous-variable cluster states. Phys. Rev. A 88(4), 042313 (2013)

    ADS  Google Scholar 

  46. Markham, D., Sanders, B.C.: Graph states for quantum secret sharing. Phys. Rev. A 78(4), 042309 (2008)

    ADS  MathSciNet  MATH  Google Scholar 

  47. Keet, A., Fortescue, B., Markham, D., Sanders, B.C.: Quantum secret sharing with qudit graph states. Phys. Rev. A 82(6), 062315 (2010)

    ADS  Google Scholar 

  48. Rahaman, R., Parker, M.G.: Quantum scheme for secret sharing based on local distinguishability. Phys. Rev. A 91(2), 022330 (2015)

    ADS  Google Scholar 

  49. Wang, J., Li, L., Peng, H., Yang, Y.: Quantum-secret-sharing scheme based on local distinguishability of orthogonal multiqudit entangled states. Phys. Rev. A 95(2), 022320 (2017)

    ADS  Google Scholar 

  50. Tokunaga, Y., Okamoto, T., Imoto, N.: Threshold quantum cryptography. Phys. Rev. A 71(1), 012314 (2005)

    ADS  Google Scholar 

  51. Changbin, L., Miao, F., Meng, K., Yue, Y.: Threshold quantum secret sharing based on single qubit. Quantum Inf. Process. 17(3), 64 (2018)

    ADS  MathSciNet  MATH  Google Scholar 

  52. Hai-Qiang, M., Ke-Jin, W., Jian-Hui, Y.: Experimental single qubit quantum secret sharing in a fiber network configuration. Opt. Lett. 38(21), 4494–4497 (2013)

    ADS  Google Scholar 

  53. Godfrin, C., Ballou, R., Bonet, E., Ruben, M., Klyatskaya, S., Wernsdorfer, W., Balestro, F.: Generalized ramsey interferometry explored with a single nuclear spin qudit. npj Quantum Inf. 4(1), 53 (2018)

    ADS  Google Scholar 

  54. Giordani, T., Polino, E., Emiliani, S., Suprano, A., Innocenti, L., Majury, H., Marrucci, L., Paternostro, M., Ferraro, A., Spagnolo, N., et al.: Experimental engineering of arbitrary qudit states with discrete-time quantum walks. Phys. Rev. Lett. 122(2), 020503 (2019)

    ADS  Google Scholar 

Download references

Acknowledgements

We would like to thank the anonymous reviewers for helpful suggestions. This work is supported by the National Natural Science Foundation of China under Grant Nos. 61572454, 61572453, 61520106007 and Anhui Initiative in Quantum Information Technologies under Grant No. AHY150100.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fuyou Miao.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix A: List of abbreviations

In this section, we list the full descriptions for the most frequently used abbreviations in the main text.

See Table 2.

Table 2 List of useful abbreviations

Appendix B: Proof of Eq. (7)

In the paper, with \(\omega ={\hbox {e}}^{2\pi i/d}\) we can first prove

$$\begin{aligned} \sum \limits _{j = 0}^{d - 1} {{\omega ^{rj}}} = \left\{ {\begin{array}{*{20}{c}} {d,\quad r = 0\bmod d}\\ {0,\quad r \ne 0\bmod d.} \end{array}} \right. \end{aligned}$$

Proof

We have \(\omega ^ { d } = {\hbox {e}} ^ { 2 \pi i } = \cos ( 2 \pi ) + i \sin ( 2 \pi ) = 1\). At first, we suppose \(r = 0\bmod d\); thus,

$$\begin{aligned} \sum \limits _{j = 0}^{d - 1} {{\omega ^{rj}}} = \sum \limits _{j = 0}^{d - 1} {{\omega ^{kdj}}} = \sum \limits _{j = 0}^{d - 1} 1 = d(k \in Z). \end{aligned}$$

If \(r \ne 0\bmod d\), so \({\omega ^r} \ne 1\). Therefore, by using the sum of geometric series, we can get

$$\begin{aligned} \sum \limits _{j = 0}^{d - 1} {{\omega ^{rj}}} = 1 + {\omega ^r} + {\omega ^{2r}} + \cdots + {\omega ^{(d - 1)r}} = \frac{{1 - {\omega ^{dr}}}}{{1 - {\omega ^r}}} = \frac{{1 - 1}}{{1 - {\omega ^r}}} = 0.\end{aligned}$$

This completes the proof. \(\square \)

Next, we can define \(\left| {{\mu _j}} \right\rangle = \mathrm{QFT}\left| j \right\rangle = \frac{1}{{\sqrt{d} }}\sum \nolimits _{k = 0}^{d - 1} {{\omega ^{jk}}} \left| k \right\rangle ,j=0,1,\ldots ,d-1 \). Moreover, consider the generalized Pauli operators \(X : = \sum _ { k = 0 } ^ { d - 1 } | k + 1 \rangle \langle k |\) and \(Z:=\sum _ { k = 0 } ^ { d - 1 } \omega ^ { k } | k \rangle \langle k |\). After performing these two operators on the state \(\left| {{\mu _j}} \right\rangle \), we have

$$\begin{aligned} X\left| {{\mu _j}} \right\rangle = {\omega ^{ - j}}\left| {{\mu _j}} \right\rangle ,Z\left| {{\mu _j}} \right\rangle = \left| {{\mu _{j + 1}}} \right\rangle . \end{aligned}$$

Here, we proof the transformation of the generalized Pauli operator X.

Proof

$$\begin{aligned} \begin{aligned} X\left| {{\mu _j}} \right\rangle&= \frac{1}{{\sqrt{d} }}\sum \limits _{k = 0}^{d - 1} {{\omega ^{jk}}} \left| {k + 1} \right\rangle = {\omega ^{ - j}}\frac{1}{{\sqrt{d} }}\sum \limits _{k = 0}^{d - 1} {{\omega ^{j(k + 1)}}} \left| {k + 1} \right\rangle \\&\mathop = \limits ^{k + 1 = r} {\omega ^{ - j}}\frac{1}{{\sqrt{d} }}\left( \sum \limits _{r = 1}^{d - 1} {{\omega ^{jr}}} \left| r \right\rangle + \left| 0 \right\rangle \right) = {\omega ^{ - j}}\sum \limits _{r = 0}^{d - 1} {{\omega ^{jr}}} \left| r \right\rangle = {\omega ^{ - j}}\left| {{\mu _j}} \right\rangle . \end{aligned} \end{aligned}$$

\(\square \)

As the definition in the paper, the generalized Pauli operation \(U_{m,n}\) is

$$\begin{aligned} {U_{m,n}} = \sum \limits _{k = 0}^{d - 1} {{\omega ^{n \cdot k}}\left| {k + m} \right\rangle } \left\langle k \right| , \end{aligned}$$

where \( m,n \in \mathrm{{GF}}(d) \). Moreover, it can be written as \({U_{m,n}}=X^mZ^n\). Because with \({X^m} = \sum \nolimits _{k = 0}^{d - 1} {\left| {k + m} \right\rangle } \left\langle k \right| ,{Z^n} = \sum \nolimits _{k = 0}^{d - 1} {{\omega ^{nk}}\left| k \right\rangle } \left\langle k \right| \), we have

$$\begin{aligned} \begin{aligned} {U_{m,n}}&= \sum \limits _{k = 0}^{d - 1} {{\omega ^{n \cdot k}}\left| {k + m} \right\rangle } \left\langle k \right| \\&=\left( {\sum \nolimits _{k = 0}^{d - 1} {\left| {k + m} \right\rangle } \left\langle k \right| } \right) \left( {\sum \nolimits _{k = 0}^{d - 1} {{\omega ^{nk}}\left| k \right\rangle } \left\langle k \right| } \right) = {X^m}{Z^n}. \end{aligned} \end{aligned}$$

So, Eq. (4) in the paper can be rewritten as

$$\begin{aligned} \begin{aligned} {U_{m,n}}\mathrm{{QFT}}\left| j \right\rangle&= {U_{m,n}}\frac{1}{{\sqrt{d} }}\sum \limits _{k = 0}^{d - 1} {{\omega ^{j \cdot k}}\left| k \right\rangle } \\&= {U_{m,n}}\left| {{\mu _j}} \right\rangle = X^mZ^n\left| {{\mu _j}} \right\rangle = \omega ^{-m(j+n)}\left| {{\mu _{j+n}}} \right\rangle . \end{aligned} \end{aligned}$$

Therefore, we finally give the proof of Eq. (7):

Proof

$$\begin{aligned} \begin{aligned} {\left| \varPsi \right\rangle _m}&=\left( {\prod \limits _{j = 1}^m {{U_{{p_j},{p_j} + {q_j}}}} } \right) {\left| \varPsi \right\rangle _0}=\prod \limits _{j = 1}^m {{X^{{p_j}}}{Z^{{p_j} + {q_j}}}} \left| {{\mu _{{p_0} + {q_0}}}} \right\rangle \\&=\omega ^{-p_1(p_0+q_0+p_1+q_1)}\prod \limits _{j = 2}^m {{X^{{p_j}}}{Z^{{p_j} + {q_j}}}} \left| {{\mu _{{p_0} + {q_0}+{p_1} + {q_1}}}} \right\rangle \\&=\xi _m\left| {{\mu _{\sum \nolimits _{j = 0}^m {({p_j} + {q_j})} }}} \right\rangle \\&=\frac{\xi _m}{{\sqrt{d} }}\sum \limits _{k = 0}^{d - 1} {{\omega ^{\left( {\sum \nolimits _{j = 0}^m {({p_j} + {q_j})} } \right) \cdot k}}} \left| k \right\rangle \\&=\frac{\xi _m}{{\sqrt{d} }}\sum \limits _{k = 0}^{d - 1} {{\omega ^{(\sum \nolimits _{j = 0}^m {{p_j}} \mathrm{{ + }}d - s + \sum \nolimits _{j = 1}^m {{c_j}} ) \cdot k}}\left| k \right\rangle } \\&=\frac{\xi _m}{{\sqrt{d} }}\sum \limits _{k = 0}^{d - 1} {{\omega ^{(\sum \nolimits _{j = 0}^m {{p_j}}+L\cdot d ) \cdot k}}\left| k \right\rangle }, (L\in Z) \end{aligned} \end{aligned}$$

with the overall phase term \(\xi _m={\omega ^{ - \sum \nolimits _{a = 1}^m {{p_a}} \left( {\sum \nolimits _{b = 0}^{a} {({p_b} + {q_b})} } \right) }}\). \(\square \)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lu, C., Miao, F., Hou, J. et al. A verifiable framework of entanglement-free quantum secret sharing with information-theoretical security. Quantum Inf Process 19, 24 (2020). https://doi.org/10.1007/s11128-019-2509-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11128-019-2509-x

Keywords

Navigation