Skip to main content
Log in

Context-aware quantum simulation of a matrix stored in quantum memory

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

In this paper, a storage method and a context-aware circuit simulation idea are presented for the sum of block diagonal matrices. Using the design technique for a generalized circuit for the Hamiltonian dynamics through the truncated series, we generalize the idea to (0–1) matrices and discuss the generalization for the real matrices. The presented circuit requires O(n) number of quantum gates and yields the correct output with the success probability depending on the number of elements: For matrices with poly(n), the success probability is 1 / poly(n). Since the operations on the circuit are controlled by the data itself, the circuit can be considered as a context-aware computing gadget. In addition, it can be used in variational quantum eigensolver and in the simulation of molecular Hamiltonians.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information. Cambridge University Press, Cambridge (2010)

    Book  Google Scholar 

  2. Childs, A.M., Kothari, R.: Simulating sparse Hamiltonians with star decompositions. Conference on Quantum Computation. Communication, and Cryptography, pp. 94–103. Springer, Berlin (2010)

    Chapter  Google Scholar 

  3. Berry, D.W., Childs, A.M., Cleve, R., Kothari, R., Somma, R.D.: Exponential improvement in precision for simulating sparse Hamiltonians. In: Forum of Mathematics, Sigma, vol. 5. Cambridge University Press, Cambridge (2017)

  4. Kassal, I., Whitfield, J.D., Perdomo-Ortiz, A., Yung, M.-H., Aspuru-Guzik, A.: Simulating chemistry using quantum computers. Ann. Rev. Phys. Chem. 62, 185–207 (2011)

    Article  ADS  Google Scholar 

  5. Olson, J., Cao, Y., Romero, J., Johnson, P., Dallaire-Demers, P.-L., Sawaya, N., Narang, P., Kivlichan, I., Wasielewski, M., Aspuru-Guzik, A.: Quantum information and computation for chemistry. arXiv preprint arXiv:1706.05413 (2017)

  6. Kais, S.: Quantum Information and Computation for Chemistry: Advances in Chemical Physics, vol. 154, p. 224109. Wiley, Hoboken (2014)

    Book  Google Scholar 

  7. Bian, T., Murphy, D., Xia, R., Daskin, A., Kais, S.: Quantum computing methods for electronic states of the water molecule. Mol. Phys. 117, 2069–2082 (2019)

    Article  ADS  Google Scholar 

  8. Xia, R., Bian, T., Kais, S.: Electronic structure calculations and the ising Hamiltonian. J. Phys. Chem. B 122, 3384–3395 (2017)

    Article  Google Scholar 

  9. Xia, R., Kais, S.: Quantum machine learning for electronic structure calculations. Nat. Commun. 9, 4195 (2018)

    Article  ADS  Google Scholar 

  10. Peruzzo, A., McClean, J., Shadbolt, P., Yung, M.-H., Zhou, X.-Q., Love, P.J., Aspuru-Guzik, A., O’brien, J.L.: A variational eigenvalue solver on a photonic quantum processor. Nat. Commun. 5, 4213 (2014)

  11. McClean, J.R., Romero, J., Babbush, R., Aspuru-Guzik, A.: The theory of variational hybrid quantum-classical algorithms. New J. Phys. 18, 023023 (2016)

    Article  ADS  Google Scholar 

  12. Low, G.H., Chuang, I.L.: Optimal Hamiltonian simulation by quantum signal processing. Phys. Rev. Lett. 118, 010501 (2017)

    Article  ADS  MathSciNet  Google Scholar 

  13. Daskin, A., Grama, A., Kollias, G., Kais, S.: Universal programmable quantum circuit schemes to emulate an operator. J. Chem. Phys. 137, 234112 (2012)

    Article  ADS  Google Scholar 

  14. Daskin, A., Kais, S.: Direct application of the phase estimation algorithm to find the eigenvalues of the Hamiltonians. Chem. Phys. 514, 87–94 (2018)

    Article  Google Scholar 

  15. Abowd, G.D., Dey, A.K., Brown, P.J., Davies, N., Smith, M., Steggles, P.: Towards a better understanding of context and context-awareness. In: International Symposium on Handheld and Ubiquitous Computing, pp. 304–307. Springer (1999)

  16. Daskin, A., Kais, S.: A generalized circuit for the hamiltonian dynamics through the truncated series. Quantum Inf. Process. 17, 328 (2018)

    Article  ADS  MathSciNet  Google Scholar 

  17. Giovannetti, V., Lloyd, S., Maccone, L.: Quantum random access memory. Phys. Rev. Lett. 100, 160501 (2008)

    Article  ADS  MathSciNet  Google Scholar 

  18. Giovannetti, V., Lloyd, S., Maccone, L.: Architectures for a quantum random access memory. Phys. Rev. A 78, 052310 (2008)

    Article  ADS  Google Scholar 

  19. Arunachalam, S., Gheorghiu, V., Jochym-O’Connor, T., Mosca, M., Srinivasan, P.V.: On the robustness of bucket brigade quantum ram. New J. Phys. 17, 123010 (2015)

    Article  ADS  Google Scholar 

  20. O’malley, P.J.J., Babbush, R., Kivlichan, I.D., Romero, J., McClean, J.R., Barends, R., Kelly, J., Roushan, P., Tranter, A., Ding, N., et al.: Scalable quantum simulation of molecular energies. Phys. Rev. X 6, 031007 (2016)

  21. Kandala, A., Mezzacapo, A., Temme, K., Takita, M., Brink, M., Chow, J.M., Gambetta, J.M.: Hardware-efficient variational quantum eigensolver for small molecules and quantum magnets. Nature 549, 242 (2017)

    Article  ADS  Google Scholar 

  22. Buhrman, H., Cleve, R., Watrous, J., De Wolf, R.: Quantum fingerprinting. Phys. Rev. Lett. 87, 167902 (2001)

    Article  ADS  Google Scholar 

  23. McClean, J.R., Kivlichan, I.D., Sung, K.J., Steiger, D.S., Cao, Y., Dai, C., Fried, E.S., Gidney, C., Gimby, B., Gokhale, P., et al.: Openfermion: the electronic structure package for quantum computers. arXiv preprint arXiv:1710.07629 (2017)

Download references

Acknowledgements

One of us, S.K, would like to acknowledge the partial support from Purdue Integrative Data Science Initiative and the U.S. Department of Energy, Office of Basic Energy Sciences, under Award Number DE-SC0019215.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ammar Daskin.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix A: Validation of the circuit in Fig. 1

The controlled gate set in the circuit has the following matrix form:

$$\begin{aligned} \left( \begin{matrix} I^{\otimes 2n-2} \otimes X &{}&{}&{}\\ &{} I^{\otimes 2n-2} \otimes Z &{}&{}\\ &{}&{} \ddots &{}\\ &{}&{}&{} I^{\otimes 2n-2} \otimes I \end{matrix}\right) \end{aligned}$$
(A1)

We can represent the whole circuit more concisely by using the direct sum of matrices:

$$\begin{aligned} \left( H^{\otimes 3}\otimes I^{\otimes 2n-1}\right) \left( \bigoplus _{j=0}^{N/2}X \oplus \bigoplus _{j=0}^{N/2}Z \oplus \bigoplus _{j=0}^{N/2}-Z \oplus \dots \bigoplus _{j=0}^{N/2}I\right) \end{aligned}$$
(A2)

To illustrate the action of the circuit, we will use the example matrix \(Q_i = Z\oplus XZ\) which leads to the following \(\left| g_{ik}\right\rangle \left| k\right\rangle \hbox {s}\):

$$\begin{aligned} \left| g_{i0}\right\rangle \left| 0\right\rangle = \left| \mathbf 1\right\rangle \left| 0\right\rangle \text { and } \left| g_{i1}\right\rangle \left| 1\right\rangle = \left| \mathbf 3\right\rangle \left| 1\right\rangle . \end{aligned}$$
(A3)

Then, we form the following 6-qubit initial state:

$$\begin{aligned} \left| g_i\right\rangle \left| \psi \right\rangle = \frac{1}{\sqrt{2}} \left( \left| \mathbf 1\right\rangle \left| 0\right\rangle \left| \psi \right\rangle + \left| \mathbf 3\right\rangle \left| 1\right\rangle \left| \psi \right\rangle \right) . \end{aligned}$$
(A4)

After applying the controlled gates (CG) to the initial state, we obtain:

$$\begin{aligned} CG \left| g_i\right\rangle \left| \psi \right\rangle = \frac{1}{\sqrt{2}} \left( \left| \mathbf 1\right\rangle \left| 0\right\rangle (Z\otimes Z)\left| \psi \right\rangle + \left| \mathbf 3\right\rangle \left| 1\right\rangle (XZ\otimes XZ)\left| \psi \right\rangle \right) . \end{aligned}$$
(A5)

Applying the Hadamard gates to the first three qubits produces the following final state:

$$\begin{aligned}&\frac{1}{4} \bigg (\big ( \left| 000\right\rangle - \left| 001\right\rangle +\left| 010\right\rangle -\left| 011\right\rangle +\left| 100\right\rangle - \left| 101\right\rangle \nonumber \\&\qquad \qquad +\left| 110\right\rangle -\left| 111\right\rangle \big ) \left| 0\right\rangle (Z\otimes Z)\left| \psi \right\rangle \nonumber \\&\quad + \big ( \left| 000\right\rangle - \left| 001\right\rangle -\left| 010\right\rangle +\left| 011\right\rangle +\left| 100\right\rangle - \left| 101\right\rangle \nonumber \\&\qquad \qquad -\left| 110\right\rangle +\left| 111\right\rangle \big )\left| 1\right\rangle (XZ\otimes XZ)\left| \psi \right\rangle \bigg ). \end{aligned}$$
(A6)

Here, the states where the first three qubits are in \(\left| 000\right\rangle \) includes the expected output which are:

$$\begin{aligned} \frac{1}{4} \big ( \left| 000\right\rangle \left| 0\right\rangle (Z\otimes Z)\left| \psi \right\rangle +\left| 000\right\rangle \left| 1\right\rangle (XZ\otimes XZ)\left| \psi \right\rangle \big ). \end{aligned}$$
(A7)

The equivalent of \(Q_i\left| \psi \right\rangle \) is produced on the amplitudes of the states:

$$\begin{aligned} \{\left| 000000\right\rangle , \left| 000001\right\rangle , \left| 000110\right\rangle , \left| 000111\right\rangle \}. \end{aligned}$$
(A8)

Appendix B: Validations of the circuits in Figs. 2 and 3

In the circuit in Fig. 2, we have the superpositioned input state \(\left| g\right\rangle \). Before the Hadamard gates on the first register of the circuit, for different \(\left| i\right\rangle \) on the output we have normalized \( Q_i \left| \psi \right\rangle \) on the same states as given in (A7) and (A8). That means for \(\left| \mathbf 0\right\rangle \) on the first register we have normalized \( Q_0 \left| \psi \right\rangle \) on the chosen states, and for \(\left| \mathbf 1\right\rangle \) we have \( Q_1 \left| \psi \right\rangle \), and so on. By applying the Hadamard gates to the first register, for \(\left| i\right\rangle = \left| \mathbf 0\right\rangle \), we generate the normalized summation \( \sum _i Q_i \left| \psi \right\rangle \) on the same chosen states.

Figure 3 is just the generalization of Fig. 2 and acts the same way.

Appendix C: A larger Hamiltonian divided into submatrices

$$\begin{aligned} \mathcal {H}= \left( \begin{matrix} H_{00}&{} H_{10}&{} H_{20}&{}H_{30}&{}H_{40}&{} H_{50}&{} H_{60}&{}H_{70}\\ H_{11}&{} H_{01}&{} H_{31}&{}H_{21}&{}H_{51}&{} H_{41}&{} H_{71}&{}H_{61}\\ H_{22}&{} H_{32}&{} H_{02}&{}H_{12}&{}H_{62}&{} H_{72}&{} H_{42}&{}H_{52}\\ H_{33}&{} H_{23}&{} H_{13}&{}H_{03}&{}H_{73}&{} H_{63}&{} H_{53}&{}H_{43}\\ H_{44}&{} H_{54}&{} H_{64}&{}H_{70}&{}H_{04}&{} H_{14}&{} H_{24}&{}H_{34}\\ H_{55}&{} H_{45}&{} H_{75}&{}H_{61}&{}H_{15}&{} H_{05}&{} H_{35}&{}H_{25}\\ H_{66}&{} H_{76}&{} H_{46}&{}H_{52}&{}H_{26}&{} H_{36}&{} H_{06}&{}H_{16}\\ H_{77}&{} H_{67}&{} H_{57}&{}H_{43}&{}H_{37}&{} H_{27}&{} H_{17}&{}H_{07}\\ \end{matrix}\right) _{16\times 16}. \end{aligned}$$
(C1)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Daskin, A., Bian, T., Xia, R. et al. Context-aware quantum simulation of a matrix stored in quantum memory. Quantum Inf Process 18, 357 (2019). https://doi.org/10.1007/s11128-019-2469-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11128-019-2469-1

Keywords

Navigation