Skip to main content
Log in

Optimal fidelity for quantum teleportation protocol of an arbitrary qubit state affected by amplitude-damping noise: causes and results

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

The improvement of the average fidelity of the quantum teleportation protocol of an arbitrary qubit state has been researched. The initial quantum channel is chosen as the non-maximally entangled state, and this state depends on a free parameter. One qubit of this quantum channel is influenced by the amplitude-damping noise environment in the Markovian regime or the non-Markovian regime. The average fidelity is enhanced efficiently through the appropriately selected free parameter of the initial quantum channel. The optimization could not be attributed to the probability as well as the noise environment that makes the initial quantum channel becomes the closest quantum channel to the maximally entangled one. Our study shows that the average fidelity is enhanced as the quantum entanglement of the initial quantum channel is harmoniously redistributed into the entanglement of quantum channel influenced by the noise environment and the entanglement between each of the qubits in this quantum channel and the noise environment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Bennett, B.H., Brassard, G., Crépeau, C., Jozsa, R., Peres, A., Wootters, W.K.: Teleporting an unknown quantum state via dual classical and Einstein–Podolsky–Rosen channels. Phys. Rev. Lett. 70, 1895 (1993)

    ADS  MathSciNet  MATH  Google Scholar 

  2. Vaidman, L.: Teleportation of quantum states. Phys. Rev. A 49, 1473 (1994)

    ADS  Google Scholar 

  3. Braunstein, S.L., Kimble, H.J.: Teleportation of continuous quantum variables. Phys. Rev. Lett. 80, 869 (1998)

    ADS  Google Scholar 

  4. Adesso, G., Illuminati, F.: Equivalence between entanglement and the optimal fidelity of continuous variable teleportation. Phys. Rev. Lett. 95, 150503 (2005)

    ADS  Google Scholar 

  5. Dell’Anno, F., Siena, S.D., Albano, L., Illuminati, F.: Continuous-variable quantum teleportation with non-Gaussian resources. Phys. Rev. A 76, 022301 (2007)

    ADS  Google Scholar 

  6. Adhikari, S., Majumdar, A.S., Nayak, N.: Teleportation of two-mode squeezed states. Phys. Rev. A 77, 012337 (2008)

    ADS  Google Scholar 

  7. Adhikari, S., Majumdar, A.S., Roy, S., Ghosh, B., Nayak, N.: Teleportation via maximally and non-maximally entangled mixed states. Quantum Inf. Comput. 10, 0398 (2010)

    MathSciNet  MATH  Google Scholar 

  8. Ganguly, N., Adhikari, S., Majumdar, A.S., Chatterjee, J.: Entanglement witness operator for quantum teleportation. Phys. Rev. Lett. 107, 270501 (2011)

    Google Scholar 

  9. Adhikari, S., Majumdar, A.S., Home, D., Pan, A.K., Joshi, P.: Quantum teleportation using non-orthogonal entangled channels. Phys. Scr. 85, 045001 (2012)

    ADS  MATH  Google Scholar 

  10. Sazim, Sk, Adhikari, S., Banerjee, S., Pramanik, T.: Quantification of entanglement of teleportation in arbitrary dimensions. Quantum Inf. Process 13, 863 (2014)

    ADS  MathSciNet  MATH  Google Scholar 

  11. Liu, D., Huang, Z., Guo, X.: Probabilistic teleportation via quantum channel with partial information. Entropy 17(6), 3621 (2015)

    ADS  MathSciNet  Google Scholar 

  12. Kiktenko, E.O., Popov, A.A., Fedorov, A.K.: Bidirectional imperfect quantum teleportation with a single Bell state. Phys. Rev. A 93, 062305 (2016)

    ADS  Google Scholar 

  13. Cavalcanti, D., Skrzypczyk, P., Šupić, I.: All entangled states can demonstrate nonclassical teleportation. Phys. Rev. Lett. 119, 110501 (2017)

    ADS  Google Scholar 

  14. Jeongho, B., Junghee, R., Kaszlikowski, D.: Fidelity deviation in quantum teleportation. J. Phys. A Math. Theor. 51, 135302 (2018)

    ADS  MathSciNet  MATH  Google Scholar 

  15. Quan, Q., Zhao, M.J., Fei, S.M., Fan, H., Yang, W.L., Long, G.L.: Two-copy quantum teleportation. Sci. Rep. 8, 13960 (2018)

    ADS  Google Scholar 

  16. Bouwmeester, D., Pan, J.W., Mattle, K., Eibl, M., Weinfurter, H., Zeilinger, A.: Experimental quantum teleportation. Nature 390, 575 (1997)

    ADS  MATH  Google Scholar 

  17. Boschi, D., Branca, S., Martini, F.D., Hardy, L., Popescu, S.: Experimental realization of teleporting an unknown pure quantum state via dual classical and Einstein–Podolsky–Rosen channels. Phys. Rev. Lett. 80, 1121 (1998)

    ADS  MathSciNet  MATH  Google Scholar 

  18. Furusawa, A., Sørensen, J.L., Braunstein, S.L., Fuchs, C.A., Kimble, H.J., Polzik, E.S.: Unconditional quantum teleportation. Science 282, 706 (1998)

    ADS  Google Scholar 

  19. Zhang, T.C., Goh, K.W., Chou, C.W., Lodahl, P., Kimble, H.J.: Quantum teleportation of light beams. Phys. Rev. A 67, 033802 (2003)

    ADS  Google Scholar 

  20. Takei, N., Yonezawa, H., Aoki, T., Furusawa, A.: High-fidelity teleportation beyond the no-cloning limit and entanglement swapping for continuous variables. Phys. Rev. Lett. 94, 220502 (2005)

    ADS  Google Scholar 

  21. DiGuglielmo, J., Hage, B., Franzen, A., Fiurášek, J., Schnabel, R.: Experimental characterization of Gaussian quantum-communication channels. Phys. Rev. A 76, 012323 (2007)

    ADS  Google Scholar 

  22. Xiao, S.M., Herbst, T., Scheidl, T., Wang, D., Kropatschek, S., Naylor, W., Wittmann, B., Mech, A., Kofler, J., Anisimova, E., Makarov, V., Jennewein, T., Ursin, R., Zeilinger, A.: Quantum teleportation over 143 kilometres using active feed-forward. Nature 489, 269 (2012)

    ADS  Google Scholar 

  23. Wang, X.L., Cai, X.D., Su, Z.E., Chen, M.C., Wu, D., Li, L., Liu, N.L., Lu, C.Y., Pan, J.W.: Quantum teleportation of multiple degrees of freedom of a single photon. Nature 518, 516 (2015)

    ADS  Google Scholar 

  24. Valivarthi, R., Puigibert, MliG, Zhou, Q., Aguilar, G.H., Verma, V.B., Marsili, F., Shaw, M.D., Nam, S.W., Oblak, D., Tittel, W.: Quantum teleportation across a metropolitan fibre network. Nat. Photonics 10, 676 (2016)

    ADS  Google Scholar 

  25. Lee, J., Min, H., Oh, S.D.: Multipartite entanglement for entanglement teleportation. Phys. Rev. A 66, 052318 (2002)

    ADS  Google Scholar 

  26. Rigolin, G.: Quantum teleportation of an arbitrary two-qubit state and its relation to multipartite entanglement. Phys. Rev. A 71, 032303 (2005)

    ADS  Google Scholar 

  27. Zhang, Q., Goebel, A., Wagenknecht, C., Chen, Y.A., Zhao, B., Yang, T., Mair, A., Schmiedmayer, J., Pan, J.W.: Experimental quantum teleportation of a two-qubit composite system. Nat. Phys. 2, 678 (2006)

    Google Scholar 

  28. Zhao, M.J., Li, Z.G., Jost, X.L., Fei, S.M.: Multiqubit quantum teleportation. J. Phys. A Math. Theor. 45, 405303 (2012)

    MathSciNet  MATH  Google Scholar 

  29. Zhao, H.P., Jian, Z., Liu, X.J., Kuang, L.M.: Construction of general quantum channel for quantum teleportation. Quantum Inf. Process. 12, 2803 (2013)

    ADS  MathSciNet  MATH  Google Scholar 

  30. Li, Y.H., Li, X.L., Nie, L.P., Sang, M.H.: Quantum teleportation of three and four-qubit state using multi-qubit cluster states. Int. J. Theor. Phys. 55, 1820 (2016)

    MATH  Google Scholar 

  31. Cai, T., Jiang, M.: Improving the teleportation scheme of three-qubit state with a four-qubit quantum channel. Int. J. Theor. Phys. 57, 131 (2018)

    ADS  MATH  Google Scholar 

  32. Popescu, S.: Bell’s inequalities versus teleportation: what is nonlocality? Phys. Rev. Lett. 72, 797 (1994)

    ADS  MathSciNet  MATH  Google Scholar 

  33. Bennett, C.H., DiVincenzo, D.P., Smolin, J.A., Wootters, W.K.: Mixed-state entanglement and quantum error correction. Phys. Rev. A 54, 3824 (1996)

    ADS  MathSciNet  MATH  Google Scholar 

  34. Ishizaka, S.: Quantum channel locally interacting with environment. Phys. Rev. A 63, 034301 (2001)

    ADS  Google Scholar 

  35. Oh, S., Lee, S., Lee, H.W.: Fidelity of quantum teleportation through noisy channels. Phys. Rev. A 66, 022316 (2002)

    ADS  MathSciNet  Google Scholar 

  36. Horodecki, M., Horodecki, P., Horodecki, R.: General teleportation channel, singlet fraction, and quasi-distillation. Phys. Rev. A 60, 1888 (1999)

    ADS  MathSciNet  MATH  Google Scholar 

  37. Yeo, Y., Kho, Z.W., Wang, L.: Effects of Pauli channels and noisy quantum operations on standard teleportation. EPL 86(4), 40009 (2009)

    ADS  Google Scholar 

  38. Hu, M.L.: Teleportation of the one-qubit state in decoherence environments. J. Phys. B At. Mol. Opt. Phys. 44, 025502 (2011)

    ADS  Google Scholar 

  39. Hu, M.L.: Environment-induced decay of teleportation fidelity of the one-qubit state. Phys. Lett. A 375, 2140 (2011)

    ADS  Google Scholar 

  40. Hu, M.L.: Robustness of Greenberger–Horne–Zeilinger and W states for teleportation in external environments. Phys. Lett. A 375, 922 (2011)

    ADS  Google Scholar 

  41. Man, Z.X., Xia, Y.J.: Quantum teleportation in a dissipative environment. Quantum Inf. Process 11(6), 1911 (2012)

    ADS  MathSciNet  MATH  Google Scholar 

  42. Bennett, C.H., Brassard, G., Popescu, S., Schumacher, B., Smolin, J.A., Wootters, W.K.: Purification of noisy entanglement and faithful teleportation via noisy channels. Phys. Rev. Lett. 76, 722 (1996)

    ADS  Google Scholar 

  43. Pan, J.W., Simon, C., Brukner, C., Zeilinger, A.: Entanglement purification for quantum communication. Nature 410, 1067 (2001)

    ADS  Google Scholar 

  44. Romero, J.L., Roa, L., Retamal, J.C., Saavedra, C.: Entanglement purification in cavity QED using local operations. Phys. Rev. A 65, 052319 (2002)

    ADS  Google Scholar 

  45. Rozpedek, F., Schiet, T., Thinh, L.P., Elkouss, D., Doherty, A.C., Wehner, S.: Optimizing practical entanglement distillation. Phys. Rev. A 97, 062333 (2018)

    ADS  Google Scholar 

  46. Pramanik, T., Majumdar, A.S.: Improving the fidelity of teleportation through noisy channels using weak measurement. Phys. Lett. A 377(13), 3209 (2013)

    ADS  MathSciNet  MATH  Google Scholar 

  47. Qiu, L., Tang, G., Yang, X., Wang, A.: Enhancing teleportation fidelity by means of weak measurements or reversal. Ann. Phys. 350, 137 (2014)

    ADS  MathSciNet  MATH  Google Scholar 

  48. Albeverio, S., Fei, S.-M., Yang, W.-L.: Optimal teleportation based on bell measurements. Phys. Rev. A 66, 012301 (2002)

    ADS  Google Scholar 

  49. Bandyopadhyay, S.: Origin of noisy states whose teleportation fidelity can be enhanced through dissipation. Phys. Rev. A 65, 022302 (2002)

    ADS  Google Scholar 

  50. Badziag, P., Horodecki, M., Horodecki, P., Horodecki, R.: Local environment can enhance fidelity of quantum teleportation. Phys. Rev. A 62, 012311 (2000)

    ADS  Google Scholar 

  51. Knoll, L.T., Schmiegelow, C.T., Larotonda, M.A.: Noisy quantum teleportation: an experimental study on the influence of local environments. Phys. Rev. A 90, 042332 (2014)

    ADS  Google Scholar 

  52. Taketani, B.G., de Melo, F., de Filho, R.L.: Optimal teleportation with a noisy source. Phys. Rev. A 85, 020301 (2012)

    ADS  Google Scholar 

  53. Bandyopadhyay, S., Ghosh, A.: Optimal fidelity for a quantum channel may be attained by nonmaximally entangled states. Phys. Rev. A 86, 020304(R) (2012)

    ADS  Google Scholar 

  54. Fortes, R., Rigolin, G.: Fighting noise with noise in realistic quantum teleportation. Phys. Rev. A 92, 012338 (2015)

    ADS  Google Scholar 

  55. Fortes, R., Rigolin, G.: Probabilistic quantum teleportation in the presence of noise. Phys. Rev. A 93, 062330 (2016)

    ADS  Google Scholar 

  56. Shi, J.D., Wang, D., Ye, L.: Entanglement revive and information flow within the decoherent environment. Sci. Rep. 6, 30710 (2016)

    ADS  Google Scholar 

  57. Xie, Y.X., Xi, X.Q.: Improving teleportation fidelity in structured reservoirs. Opt. Commun. 298, 267 (2013)

    ADS  Google Scholar 

  58. Garraway, B.M.: Nonperturbative decay of an atomic system in a cavity. Phys. Rev. A 55, 2290 (1997)

    ADS  Google Scholar 

  59. Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information. Cambridge University Press, Cambridge (2000)

    MATH  Google Scholar 

  60. Haseli, S., Karpat, G., Salimi, S., Khorashad, A.S., Fanchini, F.F., Çakmak, B., Aguilar, G.H., Walborn, S.P., Ribeiro, P.H.S.: Non-Markovianity through flow of information between a system and an environment. Phys. Rev. A 90, 052118 (2014)

    ADS  Google Scholar 

  61. Sakurai, J.J.: Modern Quantum Mechanics. Addison Wesley Publishing Company, Boston (1994)

    Google Scholar 

  62. Wootters, W.K.: Entanglement of formation of an arbitrary state of two qubits. Phys. Rev. Lett. 80, 2245 (1998)

    ADS  MATH  Google Scholar 

  63. Vidal, G., Werner, R.F.: Computable measure of entanglement. Phys. Rev. A 65, 032314 (2002)

    ADS  Google Scholar 

  64. Sabín, C., García-Alcaine, G.: A classification of entanglement in three-qubit systems. Eur. Phys. J. D 48, 435 (2008)

    ADS  MathSciNet  Google Scholar 

  65. Eisert, J., Plenio, M.B.: A comparison of entanglement measures. J. Mod. Opt. 46(1), 145 (1999)

    ADS  Google Scholar 

  66. Miranowicz, A., Grudka, A.: Ordering two-qubit states with concurrence and negativity. Phys. Rev. A 70, 032326 (2004)

    ADS  Google Scholar 

  67. Verstraete, F., Audenaert, K., Dehaene, J., De Moor, B.: A comparison of the entanglement measures negativity and concurrence. J. Phys. A Math. Gen 34(57), 10327 (2001)

    ADS  MathSciNet  MATH  Google Scholar 

  68. Miranowicz, A., Grudka, A.: A comparative study of relative entropy of entanglement, concurrence and negativity. J. Opt. B Quantum Semiclass. Opt 6(12), 542 (2004)

    ADS  Google Scholar 

Download references

Acknowledgements

This work is supported by the Vietnam Ministry of Education and Training under Grant Number B2018-SPH-48. We would like to thank Nguyen Ba An for his interests in the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nguyen Van Hop.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Van Hop, N. Optimal fidelity for quantum teleportation protocol of an arbitrary qubit state affected by amplitude-damping noise: causes and results. Quantum Inf Process 18, 340 (2019). https://doi.org/10.1007/s11128-019-2455-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11128-019-2455-7

Keywords

Navigation